
FMS

Flame Message Server

System Manual

FMS Flame Message Server System Manual
Copyright © 2006 - 2024 Flame Computing Enterprises cc All Rights Reserved

$RCSfile: FMS-Manual.sgml,v $ $Revision: 1.101.2.7.2.2.4.176 $ $Date: 2024/06/08 10:03:07 $

Copyright subsists in this work. Any unauthorised reproduction or transmission in any form by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval system of the work is an act of copyright infringement and
makes the Doer liable for civil law copyright infringement and may in certain circumstances make the Doer liable to criminal prosecution.
The authors endeavour to ensure that the information in this document is correct, but accept no liability for any error or omission.
The procedures described in this document should be read and understood by the operator before the system is used. The product is under
continuous development, and the published information may not be up to date. Any particular release of the product may not conform fully
to the functions described here, so it is important to check with <fms@flame.business> or http://fms.flame.business for details of the latest
version of the system. Specifications, estimates and other claims as to performance, space requirements, hardware compatibility, and so on
are intended for general guidance, and may require adjustment to particular circumstances.

Apple® is a registered trademark of Apple Inc.
AS4® is a trademark of OASIS Open.
Bouncy Castle Crypto APIs for Java© Copyright (c) 2000 - 2024 The Legion Of The Bouncy Castle (http://www.bouncycastle.org).
CentOS® is a registered trademark of RedHat Inc.
DUNS, Data Universal Numbering System® is a registered trademark of Dun & Bradstreet.
ebMS® is a trademark of OASIS Open.
ebXML® is a trademark of OASIS Open.
Java® is a registered trademark of Oracle Corporation.
JFreeChart© Copyright Object Refinery Limited.
Linux® is a registered trademark of Linus Torvalds.
log4j® is a registered trademark of The Apache Software Foundation.
Mac OS X® is a registered trademark of Apple Inc.
MS Windows® is a registered trademark of Microsoft Corporation.
OASIS® is a trademark of OASIS Open (http://www.oasis-open.org)
OASIS ebXML Messaging Services® is a trademark of OASIS Open.
OAGIS® is a registered trademark of The Open Applications Group.
ORACLE® is a registered trademark of Oracle Corporation.
Partner Interface Process® is a registered trademark of RosettaNet a non-profit organization.
PIP® is a registered trademark of RosettaNet a non-profit organization.
PostgreSQL® is a registered trademark of The PostgreSQL Global Development Group.
RedHat® is a registered trademark of RedHat Inc.
RosettaNet® is a registered trademark of RosettaNet a non-profit organization.
Solaris® is a registered trademark of Oracle Corporation.
Ubuntu® is a registered trademark of Canonical Ltd.
UBL® is a trademark of OASIS Open.
UNIX® is a registered trademark of The Open Group.
Wikipedia® is a a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible nonprofit charity.

FMC
Icons courtesy of http://led24.de/iconset/

FMS
Products may use libraries available under open source licenses. Licenses and Sources are available for download at
http://flame.business/downloads/sources. Contact <info@flame.business> for further information on obtaining sources.

All other trademarks belong to their respective owners.

Statements in this document are not part of a contract or product program licence. Issue of this document does not entitle the recipient to use
the products described, which is the subject of separate contracts or licences.

No part of this book may be reproduced, in any form or by any means, without express permission in writing from Flame Computing
Enterprises.

Table of Contents
Introduction...vi
1. Architecture .. 1

System Architecture.. 1
Product Architecture .. 1

FMS AS4 Light Client ... 1
FMS Starter Edition... 2
FMS Professional Edition ... 2
FMS Enterprise Edition .. 3
FMS AS4 Specifications .. 3

2. Installation.. 5
Overview.. 5

System Requirements ... 5
Supported Operating Systems .. 5
Java Runtime Environment (JRE) Requirements.. 5
Licence Requirements... 6
Certificate Requirements.. 6
Database Server ... 6

FMS Installation .. 6
Linux Distributions ... 6
Windows Distribution .. 8

Post Installation Setup.. 15
Licence Configuration .. 15
Keystore Configuration .. 15
Database Installation and Configuration... 17

3. Configuring FMS ... 20
Introduction ... 20
Initialisation Overview .. 20
System Configuration... 21

Admin User Creation.. 21
FMC... 22
Server Administration .. 22
Server Settings ... 23
FMS Messaging Configuration.. 25
Partner Identifier Configuration ... 26
Processing Modes.. 28
Messaging Security ... 32
Package Manager Configuration .. 33

Triggers... 36
Instruction .. 37
Trigger Types.. 37
Executable Type... 37
Trigger Points... 38
Arguments.. 39

FMS Logging Configuration ... 39
Log4j Configuration.. 39
Rotating log4j Files.. 40
Syslog Configuration .. 40

Altering Log4j Configuration Files... 41
Changing Logging Level.. 41

4. AS4 Client Utility .. 42
AS4 Light Client Invocation .. 42
AS4 Light Client Examples.. 43
FMS AS4 Light Client Push PMode ... 44
FMS AS4 Light Client Pull PMode... 46
FMS AS4 Light Client Push Security Context... 48
Interpreting AS4 Light Client Results.. 49

iv

5. RosettaNet/ebXML Application Configuration... 51
ebXML and RosettaNet Client Utility.. 51

Invocation... 51
Interpreting Light Client Results .. 52
ebXML/RosettaNet Client SSL Configuration ... 52
Attachments ... 53
AS4 Client Return Values... 53
ebXML and RosettaNet Client Return Values... 53
ebXML Error Messages .. 54
RosettaNet® Error Messages... 56
Configuring Pull Requests ... 57
Message Queries.. 58

6. FMS Tools and Utilites ... 59
fmsas4lc Client Wrapper.. 59
fmsconf Server Configuration Utility .. 59

fmsconf Requirements .. 60
fmsconf Administrator Configuration ... 60
fmsconf Administrator User.. 61
fmsconf Administrator Certificates .. 61
fmsconf Usage.. 62
fmsconf Environment Variables .. 62

Script to dynamically update FMS public certificates... 63
A. Server Command Line Options... 66
B. ebMS Reliable Messaging .. 67
C. FMS Log4j based Logging Configuration.. 68

Levels of Granularity.. 69
D. Extending Schema Content Support .. 71

What is a PIP®?... 71
Which Schemas are supported by default?... 71
Adding a new Schema ... 71

E. Collaboration Protocol Profile/Agreement... 73
CPP/A Definition ... 73
CPP/A Configuration .. 73

F. Examples and Test cases... 74
ebXML Example.. 74

ebXML Configuration... 74
Sending an Invoice.. 76

RosettaNet Example ... 77
G. Frequently Asked Questions ... 79

Server .. 79
Client and FMC... 83
AS4 Client .. 84

H. Version History... 86
FMS Version History .. 86

I. Glossary ... 105
J. Bibliography ... 107
Index .. 108

v

Introduction

The Flame Message Solutions (collectively known as FMS) provides a multi-protocol secure business mes-
sage server and utilities providing the middleware for communicating business messages over industry
standard protocols conforming to the Electronic Business using eXtensible Markup Language (ebXML) Mes-
saging Services Version 3.0, AS4 profile of ebMS 3.0 Version 1.0, the RosettaNet® Implementation Framework
(RNIF) Version 2.00.01, and the Extensible Provisioning Protocol (EPP). Also included are the FMS AS4 light
client, the server light client and the FMS management console.

FMS provides the critical middleware in the implementation of Service Oriented Architectures (SOA) be-
tween heterogeneous business processes.

This manual is specifically targeted at system administrators and integrators and provides the guidelines for
installing, configuring and maintaining FMS products.

Detailed guidelines on integrating FMS with business application processes are also provided.

vi

Chapter 1. Architecture

System Architecture
The typical B2B System Architecture is as follows:

Figure 1-1. Generic Architecture

The various components in the above diagram include the following

• Local Business Application - produces and consumes B2B messages. These messages are either sent or
received from a compliant B2B message handler.

Local FMS Message Handler - provides the messaging service for communicating B2B messages over a se-
cure connection to a remote message handler. It is the responsibility of the business application to generate
XML business messages with optional associated attachments complying to relevant business agreements
and the responsibility of the Message Handler to wrap these messages in an envelope conforming to the
B2B protocol. The Message Handler also secures these messages using any required authentication tokens,
signatures and encryption services.

• Local and Remote Firewalls - Optional firewalls which must be configured to allow the local message
handler to communicate with a remote messaging handler over the required TCP/IP ports.

• Remote Message Handler - Receives and sends B2B messages. Received messages are verified according
to the necessary security requirements and then handed to the remote business application. The Remote
Message Handler may optionally respond back to the local Message Handler with a receipt or error signal
indicating successful or unsuccessful processing of a message.

Product Architecture

FMS AS4 Light Client
The FMS AS4 Light Client supports push and pull message exchange patterns for secure B2B messaging with
a remote partner. It is typically used in low volume B2B applications where a permanent connection to the
Internet may not be available. The FMS AS4 Light Client provides a simple command line interface for ease
of interfacing to any existing business application. It conforms fully to the OASIS Open Group AS4 Profile
of ebMS V3 and may be used for secure signed and encrypted pushing (sending) and pulling (receiving) of
business messages in a non-realtime environment.

The FMS Light Client push and pull scenarios are illustrated in the following diagrams.

Figure 1-2. AS4 Push Scenario

1

Chapter 1. Architecture

Figure 1-3. AS4 Pull Scenario

FMS Starter Edition
The FMS Starter Server supports a single local partner to single remote partner B2B middleware server
application. It is typically used in low to medium volume real-time B2B messaging gateway applications
where a permanent connection to the Internet is required. The FMS Starter Server provides a powerful trigger
and file based interface making it easy to interface to any existing business application. It conforms fully to
the OASIS Open Group AS4 Profile of ebMS V3 and may be used for secure signed and encrypted pushing
(sending) and pulling (receiving) of business messages in a realtime B2B environment.

The starter solution licence may be extended to multiple trading partners.

Figure 1-4. FMS Starter Edition Architecture

FMS Professional Edition
The FMS Professional Server supports a high availability single local partner to multiple remote partners
B2B middleware server application. It is typically used in medium volume real-time B2B applications where
a permanent connection to the Internet is required. The FMS Professional Server provides a powerful trigger
and file-based interface making it easy to interface to any existing business application. It conforms fully to
the OASIS Open Group AS4 Profile of ebMS V3 and may be used for secure signed and encrypted pushing
(sending) and pulling (receiving) of business messages in a realtime B2B environment.

The professional solution provides the ability to define multiple business partner connections with differ-
ent business process documents such as invoices and statements thereby enabling use in different business
disciplines from a local business partner to multiple remote business partners.

The professional solution comes with an optional developers application programmers interface (API) for the
client interface. This option provides the ability to integrate business applications for pushing and pulling
messages to a remote MSH.

2

Chapter 1. Architecture

Figure 1-5. FMS Professional Edition Architecture

FMS Enterprise Edition
The FMS Enterprises Server supports a hub based multiple partners to multiple partners B2B middleware
high availability server application. It is typically used in medium to high volume B2B applications where
a permanent connection to the Internet is required. The FMS Enterprises Server provides a powerful trigger
and file-based interface making it easy to interface to any existing business application. It conforms fully to
the OASIS Open Group AS4 Profile of ebMS V3 and may be used for secure signed and encrypted pushing
(sending) and pulling (receiving) of business messages in a realtime B2B environment.

The enterprise solution includes the tools to interactively monitor business transactions between multiple
business partners on multiple virtual hosts, interactively managing messaging server resources such as con-
nections, and allowing for store-and-forward functionality.

The enterprise solution comes with an optional developers application programmers interface (API) allow-
ing customisation of the messaging server connections. This provides a flexible solution for extending the
messaging protocols to incorporate alternate protocols.

Figure 1-6. FMS Enterprise Edition Architecture

FMS AS4 Specifications

• Drummond Certified - 2013, 2014.

• e-SENS CEF Certified including SML/SMP Lookup Compliant - 2016.

• ENTSOG European Gas Industry - CEF Certified 2018.

• SuperStream Certified - 2012, 2014.

• One Way Push.

• Two Way Asynchronous Push Server only.

• One Way Pull.
3

Chapter 1. Architecture

• Secure Transport including SSL, SSLv3, TLS v.1, TLS v1.1, TLS v1.2 and TLS v1.3.

• WSS v1.1 X509 signature support including support for SHA 256 algorithms.

•

WSS v1.1 X509 encryption support including support for the following AES GCM key and data encryption
algorithms

• http://www.w3.org/2009/xmlenc11#rsa-oaep

• http://www.w3.org/2009/xmlenc11#aes128-gcm

• http://www.w3.org/2009/xmlenc11#aes256-gcm

The above algorithms are only supported with java 1.8 and later.

• Non Repudiation Receipts.

• Synchronous Error Signals.

• SWA v1.1 Attachments (compressed, signed and encrypted attachments).

• Ping test service - server only.

4

Chapter 2. Installation

Overview
The following sections discuss the requirements for a succesful installation of FMS. Further in depth detail
on the requirements are discussed in the following chapters.

System Requirements
The FMS Server requires setup by a suitably qualified system administrator who has a good understanding
of system security and networking. The server requires access to various system resources including the
following

• Access to TCP/IP ports 80, 443, 5432, 29360, 29450. Port 29360 is used for listening for management console
connections typically coming from behind the company firewall. Port 80 and 443 access is required for
receiving remote HTTP and HTTPS incoming connections. Port 5432 is typically used for connecting to
the PostgreSQL database server if required.

Any of the TCP/IP ports required by FMS may be configured to different values in the server interface
configuration.

• The FMS server must be installed on a machine appropriately configured for secure remote access with
visibility from both the internal network and outside network for the responses. This may require config-
uration on the firewall.

• FMS may be vulnerable to common TCP denial-of-service attacks including TCP SYN flooding. Server
installations should include steps to minimize the impact of a denial-of-service attack using combinations
of easily implemented solutions, such as deployment of firewall technology and border router filters to
restrict inbound server access to known, trusted clients.

Supported Operating Systems
FMS runs on various UNIX, Linux and Windows operating systems but can also be installed on any operating
system that supports the Java run time environment (JRE 1.8), including (but not limited to) the following:

• CentOS® 6, 7 and above

• Mac OS X® 10.8 and upwards

• Microsoft Windows® Server 2003 and above

• Microsoft Windows® 7 and above

• RedHat® Enterprise Linux 5, 6 and above

• Sun Solaris®

• Ubuntu® 14.04 and above

Java Runtime Environment (JRE) Requirements
FMS requires JRE version 1.8 or later. This is included in the Windows distribution by default and is also
available at https://java.com/en/download/.

Before proceeding verify that Java is in the executable path as follows
java -version

Should the version of Java not be at 1.8 or greater then either contact the system administrator to load the
correct version or ensure that the PATH environment variable is updated to point to the correct version.

Certain modern encryption algorithms are only supported by Java 1.8 and later. These include the following

• http://www.w3.org/2009/xmlenc11#rsa-oaep

5

Chapter 2. Installation

• http://www.w3.org/2009/xmlenc11#aes128-gcm

• http://www.w3.org/2009/xmlenc11#aes256-gcm

Licence Requirements
The FMS licence file (fms.lcn) must be obtained from the provider and placed in the FMS installation direc-
tory prior to operation as per the Section called Licence Configuration in the post installation section.

Certificate Requirements
Secure Certificates may either be self generated or obtained from a commercial certificate authority (CA)
such as Verisign or Thawte. See the Section called Creating a Keystore using the Key Generator in the Windows
installation section and the Section called Keystore Configuration in the post installation section for further
details.

Database Server
FMS uses a JDBC compliant database server for, amongst others, non-repudiation storage, message report-
ing, monitoring and logging, and for caching Collaboration Protocol Agreement (CPA) details.

Use of the database is recommended for all professional and enterprise installations.

Should FMS be configured with no database then AS4 pull requests are not supported. Message reporting
and realtime display of message statistics will also not be available and the CPA details will only be cached
in the running instance and will be lost on server re-start.

The database may be either installed on the same machine or on a dedicated server on the local area network.
Version 12 of PostgreSQL or later is recommended. and may be obtained either as a standard install package
with Linux operating systems or from http://www.postgresql.org.

Other JDBC compliant databases are currently not supported. Please contact the suppliers should this be a
requirement.

FMS Installation
The FMS distributions are available in various package formats for different operating systems as per the
following

Linux Distributions
The Linux distributions consist of separate RPM or debian packages for the server, management console,
client and documentation.

RPM and Debian Package Distribution Server Installation
The following steps need to be taken to install the FMS server:

1. Ensure that PostgreSQL version 12 or later, and JRE version 1.8 or later are installed

2. As the root user execute the rpm install command as follows for RPM based package systems such as
Redhat, Fedora or CentOS systems

[root@localhost ~]# rpm -ivh fms-<VERSION>.noarch.rpm

For Debian based package systems such as Ubuntu execute the install command as follows

[root@localhost ~]# dpkg --install fms-<VERSION>.deb

If upgrading RPM systems execute the rpm upgrade command as follows

[root@localhost ~]# rpm -Fvh fms-<VERSION>.noarch.rpm

For Debian systems execute the upgrade (same as install) command as follows

6

Chapter 2. Installation

[root@localhost ~]# dpkg --install fms-<VERSION>.deb

3. Initialise the server as the root user by executing the following command:
[root@localhost ~]# service fms init

An initialisation may also be necessary after an upgrade, however, previous initialised configuration
files will be extended with any new facilities. The server will terminate after initialisation.

4. Start the FMS server as the root user by executing the following command:
[root@localhost ~]# service fms start

Default configuration files will automatically be created should these not exist the first time the server
is started.

5. To stop the FMS server as the root user execute the following command:
[root@localhost ~]# service fms stop

6. To restart the server as the root user execute the following command:
[root@localhost ~]# service fms restart

7. To check the status of the server as the root user execute the following command:
[root@localhost ~]# service fms status

If the server is not running the following message will be displayed:
Flame Message Server : [DOWN]
If the server is running the following message will be displayed:

Flame Message Server : [RUNNING]

8. The FMS files are typically installed to the /home/fms, /etc/fms and /usr/share/java/fms directo-
ries.

An fms user is created, if it does not exist already, with home directory set to /home/fms.

The server is installed as a system service and will automatically be invoked on system restart. It is
important to take note of the following essential points before starting the system.

• FMS server output is logged to /var/log/fms/fms.out and errors are logged to
/var/log/fms/error.log by default.

FMS webservices security related detail is logged to /var/log/fms/fms-webservices.log.

Additional FMS related logging detail may be logged to separate log file in the /var/log/fms direc-
tory.

Logging output is controlled using the /etc/fms/log4j.properties.as4 and
/etc/fms/logging.properties configuration files. Instructions on how to configure FMS logging
output using the system logger are detailed in the Section called Syslog Configuration in Chapter 3.
Configuration changes will only take effect after restarting the FMS server.

• The product MUST be licenced prior to first invocation.

The licence MUST be obtained from the supplier and installed into the FMS home directory. Refer to
the Section called Licence Configuration for further details.

• Next the necessary server private and public keys MUST be obtained, or created if self signed, and
installed in the FMS server keystore.

The keystore MUST be created to store the private and public keys (certificates) used for secure
communication between FMS and remote servers.

Creating a keystore is not necessary when performing an upgrade as these may already exist from
the previous installation.

Refer to the Section called Certificate Configuration for instructions on how to create the keystore.

• The various configuration files are located in the /etc/fms directory. The configuration files are au-
tomatically created during installation.

Configuration setup details are documented in the Section called Server Administration in Chapter 3.

• Digital Signature and Encryption setup must to be configured as per the Section called Messaging
Security in Chapter 3.

7

Chapter 2. Installation

• If the ebXML protocol is used then either a processing mode (P-Mode) or Collaboration Protocol
Agreement (CPA) must be created The CPA settings will override any corresponding P-Mode set-
tings.

The FMS client must specify the location of the CPA should CPA support be required. Refer to Ap-
pendix E for the necessary details.

• Server certificates MUST be exported and imported into the client keystore before the client process
can be used to send messages to the server. Refer to the Section called Exporting a Public Key (Certifi-
cate) for further information.

Linux FMC Installation
The following steps need to be taken to install the FMC:

1. Ensure that JRE version 1.8 or later is installed

2. As the root user execute the rpm install command as follows for RPM based package systems such as
Redhat, Fedora or CentOS systems

[root@localhost ~]# rpm -ivh fms-mc-<VERSION>.noarch.rpm

For Debian based package systems such as Ubuntu execute the install command as follows

[root@localhost ~]# dpkg --install fms-management-console-<VERSION>.deb

If upgrading RPM systems execute the rpm upgrade command as follows

[root@localhost ~]# rpm -Fvh fms-mc-<VERSION>.noarch.rpm

For Debian systems execute the upgrade (same as install) command as follows

[root@localhost ~]# dpkg --install fms-management-console-<VERSION>.deb

Windows Distribution
The Windows installation distribution supports the following Microsoft Windows® versions:

• Windows 7 to 10

• Windows Server 2008 to 2016

Windows Installation
The FMS distribution contains both the server, AS4 light client and management console. To install from the
FMS distribution proceed with the following steps:

1. Locate or download the FMS Windows Installer distribution, typically named
fms-setup-version.exe.

2. Double click the file fms-setup-version.exe where version depicts that actual release version num-
ber.

8

Chapter 2. Installation

Figure 2-1. Windows Installer Front Page

3. Read the license and click "I accept" if appropriate.

Figure 2-2. Windows Installer License

4. Select the user access and permissions for the installation.

9

Chapter 2. Installation

Figure 2-3. Windows Installer Installation Type

5. Configure Shortcuts.

Figure 2-4. Windows Installer Shortcuts

6. The features, inclusion of the Java JRE, and installation directory (typically \Program Files\FMS\)
may be configured by selecting the Custom setup type.

10

Chapter 2. Installation

Figure 2-5. Windows Installer Setup Type

7. Windows Installer is ready to install the program files and service.

Figure 2-6. Windows Installer Setup Type

8.

11

Chapter 2. Installation

Figure 2-7. Windows Installer Installing

9. Click "Finish" to exit.

Figure 2-8. Windows Installer Finished

The majority of the configuration files are created by the server after the first invocation except for the License
file ’fms.lcn’ as discussed in the Section called Licence Configuration, and the certificate keystore ’certs’ as
discussed in the Section called Creating a Keystore using the Key Generator. Both the license and certificate
keystore must be installed in the installation directory which defaults to \Progam Files\FMS for successful
operation.

12

Chapter 2. Installation

Windows Directory Structure
The default directory structure for Windows is as per the following diagram

Figure 2-9. Windows Installation Directory Structure

Creating a Keystore using the Key Generator
When the FMS Installer has exited, select the Key Generator shortcut in the start menu to generate a default
keystore containing private and public keys. Alternately refer to the Section called Certificate Configuration
for details on manual key generation.

Figure 2-10. GUI Based Key Generator

The Key Generator is a simple access first start application used to generate keystores for containing private
and public keys. The generated keys are in RSA 1024bit format.

13

Chapter 2. Installation

The default Keystore Name, Type, Alias and Password should be used for intial configuration of FMS. The
default settings can subsequently be changed using the management console.

The following information needs to be provided:

• Common Name - The hostname that this private key and certificate will be used for.

• Organisational Unit - The department within the organisation using this key.

• Organisation - The organisation using this key.

• City - This city that the organisation is located in.

• Province/State - The Province/State where the city is located.

•

2 Letter Country Code - The 2 letter ISO 3166-1 country code, eg: NL, UK, US, ZA.

• Email - The email address of the person responsible for the certificate.

Starting the FMS Service
The FMS Microsoft Windows® Installer configures a new service named Flame Message Server which uses
the FMSService.exe executable. Start FMS by opening the Services console and selecting and starting the
Flame Message Server as per the following diagram

Figure 2-11. Windows Service Console

Should the server not start up confirm that both the license and keystore have been installed correctly. Also
check the logs which will by default be written into the log directory under the FMS installation directory.

Starting another FMS
It is also possible to run the server in a console by invoking the standalone fms.exe executable. This may be
useful in a test environment where two FMS server need to be active on the same machine.

Advanced users may also use the Windows service utilities to create a second FMS service.

14

Chapter 2. Installation

Either way ensure that the FMS installation directory is replicated to another directory for the second server
and that a second database or separate schema is used for the second server. Ensure that the FMS adminis-
tration port and messaging incoming interface ports are set to different values for the respective servers in
the cfg\ConnectionConfiguration.xml file and that the bin\fms.ini has the path values adjusted for the
new directory. Also note that default log files will appear in the log directory as per the configuration.

Post Installation Setup
FMS has certain post installation requirements after product installation to ensure smooth operation. These
are described in this section.

Licence Configuration
A licence (fms.lcn) MUST be obtained from the provider and placed in the FMS installation directory.

The licence is only valid for a specific amount of time, typically one year. Once it expires the server will halt
operation and not restart, a new licence must be obtained to allow for normal operation.

The licence detail including the licence holder and the licence expiry date is written to the system logger.
Details on where the server outputs logging detail is in the Section called Log4j Configuration in Chapter 3.

Contact <fms@flame.business> for more information on obtaining a licence.

Keystore Configuration

Certificate Configuration
Certificates come in two forms, one being a certificate as obtained from a commercial certificate authority
(CA) such as Verisign or Thawte, and the other being a self generated certificate.

Commercial certificates are signed by a CA and are generally accepted by browsers without being prompted
to accept the certificate.

Both the server (producer) and the client (consumer) require a keystore where the server keystore will contain
the server private key and the client Public Key (certificate) as generated on the client machine. Conversely
the client Keystore contains the Client Private Key and the Server Public Key (certificate). These keys are
used to enable secure message communication between the client and the server as well as between server
and server. The keys are also used to encrypt and digitally sign the content of any envelope communicated
between a local and remote server.

Obtaining a CA Signed Certificate

Purchase a certificate from a recognised Certificate Authority and proceed with the Section called Importing
Public Keys (Certificates) into the Server Keystore for installing it.

Generating a Private and Public key (Certificate)

A private and public key can be generated using readily available tools such as the Java keytool utility
with the generated keys stored in a keystore. Separate keystores must be created for the server and client.
Different aliases must also be used for each key stored in the keystore.

See the Section called Keystore Setup and Examples for generating the keystore containing the private and
public keys.

The keystore is secured with a configurable password. By default this password is changeit. Any config-
uration that uses a keystore to access certificates MUST have the correct password configured. Entering a
different password when generating a key will require re-configuration of the connection interfaces as per
the Section called FMS Messaging Configuration in Chapter 3.

In addition to the keystore password, an additional password for the actual private key (-keypass) is required
which will be prompted for or can be set using the -keypass argument to keytool. The default password is
fmsrns. Changing this requires re-configuration of the interface configuration.

15

Chapter 2. Installation

Note that PKCS12 keystores permit only a single private key/certificate combination.

It is strongly advised that the default passwords be changed from the above. The affected configuration file is
called ConnectionConfiguration.xml typically located in directory /etc/fms/ for the Linux distributions
and in the FMS installation directory, typically Program Files\fms, for the Windows distributions.

Exporting a Public Key (Certificate)

The local server public key must be exported for importing into the remote keystore. The remote public key
must be exported for importing into the local keystore.

See the Section called Keystore Setup and Examples for exporting the public keys.

Importing Public Keys (Certificates) into the Client Keystore

Obtain the local server public key as per the Section called Exporting a Public Key (Certificate).

See the Section called Keystore Setup and Examples for importing the public keys into the client keystore.

Importing Public Keys (Certificates) into the Server Keystore

Obtain the client public key and remote server public key as per the Section called Exporting a Public Key
(Certificate).

See the Section called Keystore Setup and Examples for importing the public keys into the server keystore.

Keystore Setup and Examples

The following Linux examples provide the necessary steps for setting up the keystores containing the private
and public keys on both the local (producer) and remote (consumer) hosts. Prior to running these examples
ensure that the PATH environment is set to include the directory where the keytool executables reside. This
is typically the same directory where the Java executable resides.

Note that, in this case, the keystore acts as the truststore for remote host certificates.
Generate the server keystore containing the server private and

public keys on the local server (producer).

Set storetype to PKCS12 for PKCS keystores

cd ~fms

keytool -genkeypair -keyalg RSA -validity 365 -keystore certs \

-storepass changeit -keypass fmsrns -alias fmsrns -keysize 2048 -storetype JKS

Optionally generate the server keystore containing the server private and

public keys on the remote server (consumer).

cd ~fms

keytool -genkeypair -keyalg RSA -validity 365 -keystore certs \

-storepass changeit -keypass fmsrns -alias fmsrns -keysize 2048 -storetype JKS

Export the public key from the local server (producer) keystore.

keytool -export -file producer.public.cer -keystore certs \

-storepass changeit -alias fmsrns -storetype JKS

Export the public key from the remote server (consumer) keystore.

Alternately obtain it from the system administrator on the remote server

keytool -export -file consumer.public.cer -keystore certs \

-storepass changeit -alias fmsrns -storetype JKS

Import the remote server public key (consumer) into the local server keystore (producer)

after having obtained it from the remote server

cd ~fms

keytool -import -file consumer.public.cer -keystore certs \

-storepass changeit -alias consumer_fmsrns -storetype JKS

Import the local server public key (producer) into the remote server keystore (consumer)

after having provided it to the remote server

cd ~fms

keytool -import -file producer.public.cer -keystore certs \

-storepass changeit -alias producer_fmsrns -storetype JKS

16

Chapter 2. Installation

Database Installation and Configuration
Installing and configuring the database and creating the FMS database schema requires the necessary
database administration permissions and skills. Also see the PostgreSQL documentation and in particular
the Server Configuration and Client Authentication chapters.

UNIX or Linux PostgreSQL Installation
Ensure the PostgreSQL version 12 or later database server is installed. To verify the version query the soft-
ware installation database for the PostgreSQL packages.

The following example illustrates querying an RPM based PostgreSQL database distribution.
[root@localhost ~]# rpm -qa postgres*

The following example illustrates querying a debian based PostgreSQL database as used in Ubuntu.
[root@localhost ~]# dpkg -l postgres*

Once PostgreSQL is installed, configure the database to allow TCP/IP connections by changing the
listen_addresses entry in the postgresql.conf file as per the following example
listen_addresses = ’localhost,192.168.0.1’

where address 192.168.0.1 is the TCP/IP address of the computer connecting to the database.

Ensure that the entries for local connections are set to trust in pg_hba.conf else PostgreSQL will prompt for
a password when connecting to database fms as user fms should the user fms not also exist as a system user.

The entry in pg_hba.conf should take the following form and restart PostgreSQL for unconditional user
access without authentication

host sameuser all 127.0.0.1/32 trust

and as follows if password authentication across all users from any host is required

host all all 0.0.0.0/0 md5

The above configuration change requires restarting PostgreSQL.

Refer to the PostgreSQL documentation for the further configuration details.

Once the PostgreSQL database server is configured and started, the database user which FMS uses to connect
to the database must be created as follows

First change to the default PostgreSQL user as follow
[root@localhost ~]# su - postgres

Create the FMS database user by executing the following command as user postgres. The password for the
postgres user is not set by default. If set obtain the password from the system administrator. .
[postgres@localhost ~]# createuser -d -S -R -D fms

The above command creates a PostgreSQL user called FMS with no superuser privileges and requiring no
password.

Create the database as follows.
[fms@localhost ~]$ createdb --owner fms fms

Execute the provided databaseCreation.sql script located in the fms/schema/postgresql/ directory to
create the required database tables as follows

17

Chapter 2. Installation

[fms@localhost ~]$ cd /home/fms/schema/postgres/

[fms@localhost ~]$ psql --username fms --file databaseCreation.sql fms

Alternatively the fms.sql script may be used. This script is a wrapper that creates the user and database
and then drops the FMS tables should these exist by including dropTables.sql. It then creates the tables in
optional schemas by including databaseCreation.sql.

Feel free to to make any adjustments to the SQL code in the scripts including creating and using separate
schemas as discussed in the Section called Advanced PostgreSQL Database Installation and Configuration.

Windows PostgreSQL Database Installation and Configuration
PostgreSQL natively supports the Windows operating systems. The following steps illustrate the required
steps for installing and configuring the PostgreSQL database server as well as setting up the table schema as
used by FMS.

1. Install the Windows PostgreSQL version 12 or later distribution available for free download at
http://www.postgresql.org.

2. Create an fms user and database using the pgAdmin utility. Ensure that the fms database is owned by
the fms user.

3. Create the fms data table schema as follows

• Select the fms database, select OK if the Database Encoding window pops up, then open the SQL
dialog by selecting the ’Execute arbitrary SQL queries’ button.

•

In the SQL dialog click on the open button and select the fms.sql file in the the ’\Program
Files\FMS\schema\postgres’ directory.

The fms.sql script is a wrapper that first drops the fms tables, should these exist, by including
dropTables.sql, and then creates the tables by including databaseCreation.sql. Feel free to to
make any adjustments to the SQL code in the script including creating and using separate schemas
as discussed in the Section called Advanced PostgreSQL Database Installation and Configuration.

Optionally select the databaseCreation.sql if creating the tables for the first time in the default
schema.

• Select the Execute Query button to execute the table creation script. Once completed a summary will
be displayed below. If successful then close the SQL dialog.

Modify the owner of the schema in which the fms tables are created to fms by right clicking on the
schema and selecting properties. Then, if necessary, change the owner by selecting fms in the drop
down list.

Advanced PostgreSQL Database Installation and Configuration
Advanced users may wish to install the PostgreSQL on a separate machine from the FMS machine and may
also wish to create separate database schemas for use with FMS. To do so is feasible but requires the necessary
knowledge of PostgreSQL.

Remote PostgreSQL Database Installation

The database may be installed on a separate machine from the FMS machine. The only criteria is that the
database machine is reachable by the FMS machine over a fast network connection and that the database on
the remote machine is configured to accept connections from the machine hosting FMS. This is achieved by
specifying the database host in the FMS database configuration .

18

Chapter 2. Installation

Database Schemas

A database may optionally have multiple schemas created where a single database may be used for several
trading partners but with a separate schema for each partner. Separate schemas may also be created on the
same database for each interface. It is also possible to create a set of schemas for each company on a single
database in the case of the enterprise version. Separate schemas may also be created for the production and
test systems.

Details on creating database schemas are outside the scope of this manual but are well described in the
PostgreSQL documentation.

FMS associates databases at the Interface level where an optional schema may be specified. If a schema
is specified then it is essential to create the data table configuration for that schema. This may be done by
simply editing the fms.sql database creation script and removing the comments from the lines prior to
including the the table drop (dropTables.sql) and creation (databaseCreation.sql) scripts.

19

Chapter 3. Configuring FMS

Introduction
Configuring FMS requires knowledge of various disciplines, including networks, security protocols, key-
stores and certificates, business agreements, business processes and messaging protocols and services.

The FMC utility is the preferred way of configuring FMS. and may be invoked by clicking on the FMC icon
in Microsoft Windows® or by invoking fms-config in other operating systems. Direct editing of the various
FMS configuration files is permissable for advanced users who have an understanding of XML file structure.

In addition to the FMS configuration, the FMC provides FMS system management interfaces for the follow-
ing

• Keystore creation.

• Security certificate management.

• Administration connection to multiple FMS servers.

• Log monitoring across multiple FMS servers.

• FMS server control including reloading of connections and configurations.

• Reporting of connection specific realtime statistics and message status across multiple FMS servers.

Initialisation Overview
During the first invocation FMS will initialise default configuration files and directories and populate these
with default settings and a single administration connection interface listener.

FMS uses an initial server settings file and a server messaging configuration file, as follows

1. The FMS server settings file main.conf, automatically created and populated with initial server set-
tings as detailed in the Section called Server Settings.

2. The default configuration file, ConnectionConfiguration.xml, automatically created and populated
with default messaging settings.

This file defines the configurations required for communicating messages between partners and con-
tains configuration settings for the following

Partner Identifiers

This section is used for storing specific partner values such as the partner identity and type,
identifier type, keystore alias and password, the partner endpoint URL, and a comma delimited
set of content codes used for authorisation purposes.

Processing Modes (P-Mode)

This section contains the processing mode (P-Mode) configurations for message communication
between an initiating partner and a responding partner, including the events or legs with associ-
ated triggers for a message conversation.

Interfaces

This section contains the port settings and protocol definitions for the supported interfaces includ-
ing the ebXML, RosettaNet, Reliable Messaging and administration connections. It also contains
the database configuration for message logging per interface and associated triggers.

KeyStores

This section contains references to filesystem-based KeyStores. KeyStores contain the private and
public keys (Certificates) used when signing and/or encrypting outbound messages and verifying
and decrypting inbound messages.

20

Chapter 3. Configuring FMS

Services

This section contains a list of Services, with each service associated with a business process.

A service contains a subset of Dictionary action names relevant to a required business process
which may be referenced from a Processing Mode Business Information Service and set of associ-
ated Actions.

Dictionaries

This section contains a mapping between the payload schema names (Actions) and a Dictio-
nary identifier to be referenced by Service entries. A Dictionary would typically consist of a set of
XML Schemas corresponding to a specification such as UBL (Universal Business Language), PIDX
(Petroleum Industry Data eXchange), or EPP (Extensible Provisioning Protocol).

Packagers

This section contains a mapping between a text name and a Java class path denoting the location
of a package manager to load, as well as relevant packager protocol properties used for various
stages of messaging including security and messaging protocol validation processes.

The enterprise version of FMS is required to create new protocol packages.

System Configuration
After installation the system needs to be configured to allow successful message communication between
business partners. This section discusses the FMC and the various configuration settings in detail.

Prior to invoking the management console to configure the system ensure that the server keystore containing
private and public keys are created as described in the Section called Generating a Private and Public key
(Certificate) in Chapter 2, and that the FMS server is running with the administration interface listening for
connections (default).

Admin User Creation
The FMC connects to the server over a secure authenticated connection. The default user is admin. The
password must be created in file user.cfg on the machine on which the server is installed prior to connecting
to the FMS server. This is done as follows

Windows

1. Open a new command console in windows and navigate to the FMS configuration directory.
cd "\Program Files"\FMS\cfg\

2. Invoke the adduser.exe utility with the username as the argument as follows
..\bin\adduser admin

3. Enter the user password, and again to confirm.

Repeat the above steps to reset a password.

UNIX and Linux

1. Open a console and navigate to the FMS configuration directory.
cd /home/fms/

2. Locate and invoke the jar file fms_connections.jar with adduser and the username as the argument
in the configuration directory.
java -jar /path/to/fms_connections.jar adduser admin

3. Enter the user password, and again to confirm.
21

Chapter 3. Configuring FMS

Repeat the above steps to reset a password.

Admin User Deletion
Delete a user by using a text editor to remove the line containing the user name in the user.cfg file.

FMC
FMC is the primary administration interface for administering the FMS server. Invoke FMC as follows

Windows

Select FMC from the Windows command menu and log in with the user and password as set using the
adduser.exe utility.

UNIX and Linux

Invoke FMC from the command line as follows
[user@localhost fms]$ java -jar fms_mc.jar &

Server Administration
The FMS server configuration is stored in an XML file typically called ConnectionConfiguration.xml. The
configuration can be accessed either via connecting the FMS Management Console (FMC) to an FMS server
or by directly editing the FMS configuration file using a standard text editor and the fmsconf utility as
described in section the Section called fmsconf Server Configuration Utility in Chapter 6.

Figure 3-1. Screen shot of the FMC before opening an administration connection to the server

Command Descriptions:

• MOTD

View the Message Of The Day as set in the administration interface.
22

Chapter 3. Configuring FMS

• Refresh Configuration

Reload the Configuration file but do not reload the live connections, useful when adjusting Partner Iden-
tifiers, Processing Modes/Events and other business orientated configurations.

• Log Level

Adjust the current server logging level. The previous log level will be indicated by the selected button in
the list of log levels.

• Reload Interfaces

Close all the current connections and reload the Interface Configuration, useful when updating port num-
bers, hostnames, or security requirements, refer to the Section called FMS Messaging Configuration for more
information.

• Close Interfaces

Close all the current interfaces. Warning: All the interfaces will be shut down, including the administration
interface (excluding current sessions). A server restart will be required to re-establish the interfaces should
the management console disconnect while the interfaces are closed.

Figure 3-2. Screen shot of the FMC prior to making a connection

Server Settings
The server initial settings, typically stored in main.conf, can be viewed by right clicking on the Server
connection node and selecting Properties.

The detail of the main configuration is as follows

23

Chapter 3. Configuring FMS

Figure 3-3. Default Configuration Example

CONNECTION_CONFIGURATION_FILE

The name of the default Configuration File. This file is stored in the FMS startup directory and contains
configuration settings including partner, processing mode, interface definitions, business services and
protocol packagers as required for a functioning FMS.

HTTP_REQUEST_STORAGE_DIRECTORY

Incoming requests are stored in this directory in the event of the Non-Repudiation database being un-
available.

LOGGING_LEVEL

The starting Log Level for FMS with default set at INFO. This can be set to any one of OFF, FATAL,
ERROR, WARN, INFO, DEBUG, TRACE, ALL.

SPECIFICATION_JARS

A comma ’,’ delimited list of Java archives (Jars) containing specification schema (xsd), document type
definition (dtd) and java class files to be referenced for entity resolution when validating/parsing XML
incoming and outgoing message payloads.

The default setting is fms_RosettaNet.jar, fms_ebXML.jar, fms_WSRM.jar.

This setting is relevant in the enterprise edition when extending the available interfaces.

XML_INDENT_STRING

XML Indent String (Spaces or \t for Tab). Defaults to two (2) spaces.

MESSAGE_TMP_DIR

A temporary directory, automatically created, relative to the installation directory used for intermediate
message payload and attachment files. The default name is temp.

METADATA_FILE

The default FMS metadata file name (metadata.fmd) as created in the
delivered-content/initiatingParty/respondingParty/message-id directory where message-id
is a unique identifier for each received message ensuring that each received message has it's own
associated metadata file. This XML file contains information related to delivered message payload and
attachments and has the following format
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<fmd:FMSMetadataDocument xmlns:fmd="http://fms.flame.business/FMS/schema/FMSMetadataDocument">

<fmd:Legal>

24

Chapter 3. Configuring FMS

<fmd:Copyright>(c) Flame Computing Enterprises cc. All rights reserved</fmd:Copyright>

</fmd:Legal>

<fmd:To>ToPartyID</fmd:To>

<fmd:From>FromPartyID</fmd:From>

<fmd:ConversationID>123</fmd:ConversationID>

<fmd:Service>A06</fmd:Service>

<fmd:Action>http://docs.oasis-open.org/ebxml-msg/as4/200902/action</fmd:Action>

<fmd:MessageID>739cdd60-5d45-4132-a43e-48226a4ba383@domain.com</fmd:MessageID>

<fmd:ProcessingMode>AS4-ENTSOG-PROD</fmd:ProcessingMode>

<fmd:Event>ReceiveMessage</fmd:Event>

<fmd:ToRole>ZSH</fmd:ToRole>

<fmd:FromRole>ZSO</fmd:FromRole>

<fmd:AgreementRef>ThisAgreement</fmd:AgreementRef>

<fmd:Timestamp>2019-05-09T15:57:46Z</fmd:Timestamp>

<fmd:MessagePayloads>

<fmd:Payload>

<fmd:MimeContentID>739cdd60-5d45-4132-a43e-48226a4ba383@domain.com</fmd:MimeContentID>

<fmd:MimeContentType>application/xml</fmd:MimeContentType>

<fmd:Location

>/home/fms/delivered-content/FromPartyID/ToPartyID/739cdd60-5d45-4132-a43e-48226a4ba383@domain.com/20190509175746537.xml

</fmd:Location>

</fmd:Payload>

</fmd:MessagePayloads>

</fmd:FMSMetadataDocument>

FMS Messaging Configuration
After a Business to Business (B2B) Messaging Agreement has been proposed the messaging configuration
settings in accordance with the messaging protocol and partner agreements must be defined in order to
receive and send B2B Messages.

Messaging configuration details may be configured using the FMC or directly using a text editor in the server
ConnectionConfiguration.xml file.

The Interface Configuration node of the FMC enables a fast and efficient way of configuring FMS interfaces.
This configuration can also be performed manually by editing the file ConnectionConfiguration.xml, note
that this is only recommended for advanced administrators.

Figure 3-4. Administration Console Configuration screen shot

25

Chapter 3. Configuring FMS

New Configurations are created by selecting the New toolbar button and clicking on the New Interface
option. This is only necessary for advanced customisation when adding a new protocol to FMS. Typically
this is not required because the default interfaces can simply be edited. The security and database settings
can be configured on a per Interface Configuration basis as per the above configuration screen shot should
these be required. The Interface security level sets a minimum security level for all messages sent using this
interface. Note that higher values will override Processing Mode Event Security level settings.

After the server has been started or initialised, all the enabled listener/sender configurations will be popu-
lated with default values. This screen is accessible by selecting the node for each listener/sender.

Figure 3-5. Default Configuration example

Each connection has an association to a Packager Configuration Identifier. This allows message transformation by
switching between Transport Specifications such as RosettaNet to ebXML.

Partner Identifier Configuration
A mapping of a Partner Identifier (eg. DUNS number) to other relevant partner information needs to be
created for use within the system. A default local and remote partner is automatically created by the system
on startup. These should be modified according to requirements.

Create or modify an existing Partner Identifier entry by selecting New from the main menu or toolbar.
Select New PartnerIdentifier. Complete the required information as follows and select Save to finalise
the changes.

26

Chapter 3. Configuring FMS

Figure 3-6. Partner Identifier Configuration Example

• Identifier - The actual value, or name, of the partner identifier. The partner identifier on the local side
(producer) must correspond with the partner identifier on the remote side (consumer) and vice versa.

• Partner Type - The type of the partner identifier being either a LOCAL_PARTNER or REMOTE_PARTNER.

• Identifier Type - The type of the partner identifier (urn:oasis:names:tc:ebxml-cppa:partyid-type:duns
is used in this example). The type must match the type of the PartyID in the PartyInfo section of the CPA
if used with the ebMS specification.

• Keystore Alias - The Keystore Alias entry stores an Alias name in the Keystore referring to a remote
partner's public certificate and the local partners private key. The public key is used to encrypt a message
to be sent to the corresponding remote partner where it will be decrypted using the private key. The local
partner private key is used to generate digital signature which may be attached to the message[s] and/or
to the envelope containing the set of messages and optional attachments. The remote partner MSH uses
the local partner public key to verify the signatures.

• Alias Password - A password is required if the above alias refers to a Private Key and is used to retrieve
the key during envelope and message signing and message decryption.

• Keystore ID - The reference to a KeyStore from the server configuration which contains the above Private
and/or Public Keys.

• Partner mailBox ID - the optional configurable inbound message mailbox for local partners,
LOCAL_PARTNER, and outbound message mailbox for remote partners, REMOTE_PARTNER. The
mailBox setting will override the interfaceConfig.deliveredContent directory.

Mailbox directories starting with the directory separator will be treated as absolute. Directories starting
without a directory separator will be saved in the FMS installation directory.

Mailbox directories may either be explicit directory names or customised using the following variables
determined from inbound messages for local partners.

• $toPartner - message to partner identifier with any preceding URI elements removed to ensure a consis-
tent directory structure.

• $fromPartner - message from partner identifier with any preceding URI elements removed to ensure a
consistent directory structure.

• $messageID - message identifier with any preceding URI elements removed to ensure a consistent direc-
tory structure.

• $conversationID - message conversation identifier with any preceding URI elements removed to ensure
a consistent directory structure.

• $service - message service with any preceding URI elements removed to ensure a consistent directory
structure.

27

Chapter 3. Configuring FMS

• $action - message action identifier with any preceding URI elements removed to ensure a consistent
directory structure.

• Endpoint URL - The Endpoint URL entry stores the endpoint URL of the partner. This being the URL
of the remote service that the partner will be invoking. This entry is used in the send or response action
during asynchronous service interaction with a remote partner service.

The actual endpoint used depends on several conditions being as follows

Processing Mode CPP/A Agreement

The endpoint used will be as per the CPP/A agreement value in PRODUCTION mode for the ebXML
specification if the processing mode agreement configuration setting is defined.

Processing Mode Event Endpoint

The endpoint defined in the processing mode event will be used if no overriding processing mode
CPP/A agreement in PRODUCTION mode is defined.

Partner Endpoint

The endpoint defined for the partner will be used if neither the processing mode event configuration
setting is defined nor the CPP/A agreement value in PRODUCTION mode is defined.

• Authorisation List - The section Authorisation List stores a list of Schema Codes. A client will be re-
stricted to only send items in this authorisation list. If the list is empty then no restrictions exist.

• Partner Type - This is an enumeration of the following values {REMOTE_PARTNER, LOCAL_PARTNER,
PULL_PARTNER}.

• REMOTE_PARTNER - Defines that this server IS NOT responsible for this Partner Identifier and any
incoming messages destined for this Partner Identifier must be delegated to the responsible endpoint
URL.

• LOCAL_PARTNER - Defines that this server IS responsible for this Partner Identifier and any incoming
messages for this Partner Identifier will be stored locally for retrieval at a later stage.

• PULL_PARTNER - The same as LOCAL_PARTNER, however, the message is stored in a form in which
the Partner can perform a Pull Request for retrieval.

• Triggers - A list of triggers associated with this PartnerIdentifier, refer to the Section called Triggers for more
information.

Processing Modes
Processing Modes (as defined by the ebMS Specification) provide a centralized configuration for business
messages. Processing Modes consist of the following

• General section - Contains the message pattern, CPA configuration, and partners involved in this process-
ing mode.

• Events section - Defines the endpoint of a message, payload profiles, and other information.

• Protocol - Contains information for the endpoint, http compression, and message retry configuration.

• Business Information - Business centric information such as the Service and Action for this message
sequence.

• Security - Security information including digital encryption/signatures, and UsernameToken manage-
ment.

• Reliability - WS-ReliableMessaging configuration.

• Error Handling - Who and where to send error messages to.

28

Chapter 3. Configuring FMS

ProcessingModes - General Configuration

Figure 3-7. Default ProcessingMode-General example

• Identifier - A unique identifier for this ProcessingMode, MUST NOT contain spaces and consists of ONLY
alpha-numeric characters and hyphens ’-’.

• Agreement - A URL pointing to a Collaboration Protocol Agreement CPA.

• Conversation ID - This element is a string identifying the set of related messages that make up a conversa-
tion between Parties.

• Message Exchange Pattern (MEP) - This item is not directly configurable since it is defined by the event
count in this processing mode.

• Message Exchange Pattern Binding - Dependant on the MEP above, if the MEP is OneWay then the MEP-
Binding may be one of {PUSH, PULL}, however if the MEP is TwoWay then the MEPBinding may be one
of {PUSH-AND-PUSH, PUSH-AND-PULL, PULL-AND-PUSH, PULL-AND-PULL, SYNC}. SYNC is only
usable if a synchronous trigger is used on receipt of an incoming message.

• Party - A dropdown list of Partner Identifiers for defining the respective party for initiating or responding
in this ProcessingMode.

• Role - The role of the party in this ProcessingMode

• Username - The username to use for UsernameToken authentication.

• Password - The password to use for the supplied username. Note that confirmation of passwords will need
to be performed when adjusting this value.

ProcessingModes - Event
An Event is defined as an action in which a message is sent from the initiating party to the responding party
(in the first event). The parties are swaped for each subsequent event, i.e. the initiating party in the second
event will temporarilly be receiving messages from the responding party.

• Identifier - A unique identifier for this ProcessingMode Event, MUST NOT contain spaces and consists of
ONLY alpha-numeric characters and hyphens ’-’.

29

Chapter 3. Configuring FMS

Event - Protocol

Defines protocol-related parameters necessary for interoperating, that are associated with a particular mes-
sage of the MEP.

Figure 3-8. Default Event-Protocol example

• Identifier - A unique identifier for this ProcessingMode Event, MUST NOT contain spaces and consists of
ONLY alpha-numeric characters and hyphens ’-’.

Event - Business Information

Defines the business profile of a user message in terms of business header elements and their values (e.g.
Service, Action) or other items with business significance (payload profile, MPC).

Figure 3-9. Default Event-BusinessInfo example

30

Chapter 3. Configuring FMS

Event - Security

Defines the security level expected for the message in the exchange, and provides related security context
data.

Figure 3-10. Default Event-Security example

Event - ReliableMessaging

Defines the reliability contracts and their parameters, applying to the message in this Event.

31

Chapter 3. Configuring FMS

Figure 3-11. Default Event-Reliability example

Event - ErrorHandling

Defines the mode of handling and of reporting of errors associated with the message in this Event.

Figure 3-12. Default Event-ErrorHandling example

Messaging Security
B2B Messages can be secured using message signing and/or encryption of various elements of both inbound
and outbound messages. This section provides the necessary detail of how messages may be sigined and or
encrypted.

32

Chapter 3. Configuring FMS

Digital Signatures
A digital signature is a form of authentication in which message elements such as the message body is
digitally signed by a private signing key. When a message is received the receiving agent verifies the digital
signature eithe with the enclosed public key, or using an external saved copy of the public key against the
various signed message elements. If this verification fails the message will not be accepted since it implies
that the original message was tampered with during transmission. Message signing can be configured in the
relevant connection configuration as detailed in the Section called FMS Messaging Configuration. Refer to the
Section called Certificate Configuration in Chapter 2 for information on configuring private and public keys.

Encryption
Encyption involves retrieving the recipient's public key (certificate) and encrypting the message content
against it. The recipient then uses their private key to decrypt the message. This 'swopping' of certificates
normally takes place when obtaining or creating a certificate as discussed in the Section called Certificate
Configuration in Chapter 2.

A number of steps need to be taken to ensure that encryption will take place. These include the following

1. The unrestricted Java policy files need to be installed to ensure unrestricted algorithm strength used for
encryption. This can be achieved by copying the file local_policy.jar from the installation directory
to the $JAVA_HOME/lib/security/ directory. The default policy file enforces a keystrength unsuitable
for encryption with FMS.

2. A mapping of recipient DUNS number to Keystore alias needs to be assigned for encryption purposes.
This is achieved by creating a PartnerIdentifier section by providing focus to the Partner Identifier list
and clicking the Add button. Complete the required information and click Save to finalise the changes.
Refer to the Section called Partner Identifier Configuration.

Package Manager Configuration
Additional messaging specifications in the form of Package Managers are supported by FMS. These pack-
age managers MUST be configured in the file ConnectionConfiguration.xml. The Packager Configuration
section contains a simple mapping between a key name and a Java class path denoting the location of the rel-
evant package manager in the classpath. These Package Managers can have their own configuration sections
in the ConnectionConfiguration.xml file. By default RosettaNet and ebXML packaging specifications are
included in FMS, refer to the Section called RosettaNet Package Configuration and the Section called ebXML
Package Configuration.

RosettaNet Package Configuration
The RosettaNet Package Configuration Section is named RosettaNet-PackageManager. This section con-
tains RosettaNet® specific options such as GLOBAL_USAGE_CODE. GLOBAL_USAGE_CODE can be one of two val-
ues being Test or Production.

As well as:

33

Chapter 3. Configuring FMS

Figure 3-13. RosettaNet Package Configuration example

Description of the RosettaNet Package configuration options:

• DELIVERY_HEADER_DATE_FORMAT - The Java based date/time format for use within the packaged
RosettaNet DeliveryHeader.

• DELIVERY_HEADER_PATH - A Class path to the JAXB created class bindings for the RosettaNet Specifi-
cation DeliveryHeader Schemas.

• DELIVERY_HEADER_TIMEZONE - The Timezone to adjust the current server time to.

• EXCEPTION_PATH - A Class path to the JAXB created class bindings for the RosettaNet Specification
Exception Schemas.

• GLOBAL_ADMINISTERING_AUTHORITY_CODE - Instance from set of codes identifying an administrat-
ing authority.

• INITIATING_PARTNER_IDENTIFICATION_DOMAIN - The type of Partner Identifier to be used (For ex-
ample: DUNS)

• IS_SECURE_TRANSPORT_REQUIRED - Affirmative (Yes/No) value indicates that the next hub must
transmit this message securely.

• PREAMBLE_PATH - A Class path to the JAXB created class bindings for the RosettaNet Specification
Preamble Schemas.

• RECEIPT_ACKNOWLEDGMENT_PATH - A Class path to the JAXB created class bindings for the Roset-
taNet Specification ReceiptAcknowledgement Schemas.

• RECEIVER_IDENTIFICATION_DOMAIN - The type of Partner Identifier to be used (For example: DUNS)

• ROSETTANET_HEADER_NAMESPACE_AWARE - Boolean (true/false) value for use during parsing of
RosettaNet headers to define XML Namespace awareness.

• ROSETTANET_HEADER_VALIDATION - Boolean (true/false) value enabling/disabling RosettaNet
header validation.

• SENDER_IDENTIFICATION_DOMAIN - The type of Partner Identifier to be used (For example: DUNS)

• SERVICE_HEADER_PATH - A Class path to the JAXB created class bindings for the RosettaNet Specifica-
tion ServiceHeader Schemas.

• SERVICE_MESSAGE_STANDARD - The standard with which the Service Content MUST be compliant.

• SERVICE_VERSION - The version of the standard with which the Service Content MUST be compliant.

• STANDARD_VERSION - Identifies the version number of the standard (RNIF Version).

ebXML Package Configuration
The ebXML Package Configuration Section is named ebXML-PackageManager.

34

Chapter 3. Configuring FMS

Figure 3-14. ebXML Package Configuration example

Description of the ebMS Package configuration options:

• CPA_TIME_TO_LIVE - The lifetime in seconds that the Collaboration Protocol Agreement should live for
before an updated copy is retrieved from the provided URL.

• CPPA_CORE - A Class path to the JAXB created class bindings for the CPP/A Specification Schemas.

• DELIVERY_HEADER_DATE_FORMAT - The Java based date/time format for use within the packaged
ebXML SOAP envelope.

• DELIVERY_HEADER_TIMEZONE - The Timezone to adjust the current server time to.

• EBMS_CORE - A Class path to the JAXB created class bindings for the ebXML V3 Specification Schemas.

• ENCRYPTED_ELEMENTS - A comma delimited list of elements appearing in the Request SOAP header
that should be encrypted.

• ENCRYPTION_CANONICALISATION_ALGORITHM - Web Services Security specific setting.

• ENCRYPTION_KEY_ALGORITHM - Web Services Security specific setting.

• ENCRYPTION_SYMMETRIC_KEY_ALGORITHM - Web Services Security specific setting.

• RECEIPT_ENCRYPTED_ELEMENT - A comma delimited list of elements appearing in the Receipt SOAP
header that should be encrypted.

• SIGNAL_CORE - A Class path to the JAXB created class bindings for the ebBP Signal Specification Schema.

• SIGNATURE_ALGORITHM - Web Services Security specific setting.

• SIGNATURE_CANONICALISATION_ALGORITHM - Web Services Security specific setting.

EPP Package Configuration
The EPP Package Configuration Section is named EPP-PackageManager.

35

Chapter 3. Configuring FMS

Figure 3-15. EPP Package Configuration example

Description of the EPP Package configuration options:

• DEFAULT_EPP_PMODE_NAME - The provided default Processing Mode identifier that the EPP specifica-
tion should use when utilizing backend authenticaton of client identifiers. The Processing Mode contains
default values required for message storage and transmission.

• EPP_SCHEMA - The path to the EPP XML Schema, this path is prefixed by the SCHEMA_DIRECTORY
system variable.

• DEFAULT_EPP_SERVICE_NAME - The provided default Service that will be used when generating EPP
Greetings, this service may be extended or customized according to the Listener used.

• BACKEND_LOGIN_HANDLING - When set to ’true’ a trigger will be invoked to perform backend login
authentication. This trigger will be invoked with a METHOD argument (set to ’login’) in the Custom
Arguments of the specified trigger. Note that when using an Embedded Trigger the METHOD argument
is set as a variable.

• EPP_CORE - A Class path to the JAXB created class bindings for the EPP Schemas.

• SERVICE_EXTENSION_PREFIX - A string prefix used to differentiate internal from external Commands
and/or Objects within the EPP Specification. When the Service associated Dictionary Action Code has this
prefix (including a semi-colon ’:’, eg: ’ext:secDNS1.1’) it is assumed to be an extension to EPP and treated
accordingly.

• STRICT_VALIDATION - This instructs the XML parser and validation system to perform a strict validation
of the supplied EPP XML. The file system siblings of the above EPP_SCHEMA are located and used to
validate the XML, any web references to imported Schemas will be resolved and cached so an initial load
time is expected once per server instance.

• SERVER_IDENTIFIER_PREFIX - A string prefix used to customize the server generated transaction iden-
tifiers when receiving an optional client transaction identifier.

• DEFAULT_SERVER_NAME - The server name to be used when generating the EPP Greeting.

• LOGIN_FAILURE_LIMIT - Sets the maximum number of times a login can fail before being disconnected.
0 indicates unlimited failures.

Triggers
Triggers provide a powerful interface into the business environment through the invocation of customizable

36

Chapter 3. Configuring FMS

instructions.

Figure 3-16. Triggers

Instruction
The Trigger Instruction field contains either the LOG_MESSAGE or the executable/script path to be invoked, as
well as arguments to be passed to the invoked executable/script.

Trigger instructions are based on Java Formatted Strings. The following link provides more information on
formatted strings.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html#summary

Trigger Types
Triggers are available in 3 types {LOG, EXEC, SYNC_EXEC}

• LOG - The instruction value is displayed as a log message in the logging system with the chosen arguments
included when formatting.

• EXEC - The instruction value is considered a system executable and will be invoked as such.

• SYNC_EXEC - Differs from EXEC in the way it handles STDOUT. It is assumed, when setting SYNC_EXEC,
that the executable will return a valid XML Object which is considered a synchronous return if the associ-
ated P-Mode has an MEP Binding of type sync.

It is critical to note the following when creating EXEC and SYNC_EXEC triggers:

1. Any system executable that is in the environment PATH is invokable.

2. The trigger executable MUST either be in the PATH or MUST be fully qualified. The executable must
have execute mode set on UNIX systems.

3. The executable MUST return in a reasonable amount of time

4. The executable MAY return error messages to STDERR which will be displayed if the return value is
greater than 0.

37

Chapter 3. Configuring FMS

Executable Type
When Trigger Type EXEC or SYNC_EXEC is selected then an Executable Type should be selected. EXTERNAL
is used by default if this argument is not provided.

• JEP - Instructs the Trigger mechanisms to utilize the built in JEP (Java Embedded Python) Script Engine.
JEP is a JNI implementation of CPython, allowing a native interface to all CPython libraries.

• JYTHON - Instructs the Trigger mechanisms to utilize the built in Jython (Java Python) Script Engine.
Jython is a Java implementation of Python, allows for a simple interface to Python but is limited to the
core Python mechanisms. Utilizing third party libraries and imports is restricted when using Jython

• EXTERNAL - Instructs the Trigger mechanisms to invoke a system process enabling maximum compati-
bility however resulting in a high performance overhead while creating the process.

Further Script Engines will be available in future releases, including but not limited to [Ruby, PHP, JavaScript,
AWK, etc]

Trigger Points
Various points exist at which an assigned trigger will be invoked. These are identified as follows

•

SEND. Triggers when a message is sent from the server or via a synchronous return as provided by a
SYNC_EXEC trigger.

• RECEIVE. Triggers when a message is received on the server via a Pull Request or an Incoming Request.

•

RESPONSE_SENT. This trigger fires after writing final signal response (Receipt or Error) for an incoming
user message. It may be used for implementing twoWay MEPs by sending response for the 2nd leg of the
twoWay MEP by using the messageID argument as the refToMessageID using the ’-r’ command line
argument to the FMS AS4 Light Client. The Configuration Trigger arguments are as follows

<tg:Trigger>

<tg:identifier>SendResponse</tg:identifier>

<tg:enabled>true</tg:enabled>

<tg:type>SynchronousExecutable</tg:type>

<tg:location>RESPONSE_SENT</tg:location>

<tg:instruction>run/trigger/Response.sh %1$s %2$s %3$s %4$s %5$s %6$s %7$s \

%8$s %9$s %10$s %11$s %12$s %13$s</tg:instruction>

<!-- messageID of the receipt or error return else nothing -->

<tg:providedArguments>messageID</tg:providedArguments>

<tg:providedArguments>service</tg:providedArguments>

<tg:providedArguments>action</tg:providedArguments>

<tg:providedArguments>processingMode</tg:providedArguments>

<tg:providedArguments>event</tg:providedArguments>

<tg:providedArguments>senderIdentifier</tg:providedArguments>

<tg:providedArguments>recipientIdentifier</tg:providedArguments>

<tg:providedArguments>replyMessageID</tg:providedArguments>

<tg:providedArguments>conversationID</tg:providedArguments>

<tg:providedArguments>agreementRef</tg:providedArguments>

<tg:providedArguments>senderRole</tg:providedArguments>

<tg:providedArguments>recipientRole</tg:providedArguments>

<tg:providedArguments>submitted</tg:providedArguments> <!-- signal timestamp else nothing -->

<tg:providedArguments>payload</tg:providedArguments> <!-- response signal if available else "null" -->

<tg:executionType>External</tg:executionType>

</tg:Trigger>

•

PULL_REQUEST. Triggers when a message is placed in an inbox for a specified MPC.

•

PULL_REQUEST_EXPIRED. Triggers if a Pull Request life time has expired at the time of collection. The
life time is defined by the retry interval multiplied by the amount of retries as defined in the configuration.

38

Chapter 3. Configuring FMS

•

ACK. Triggers when an Acknowledgement is returned to the server either as a response (synchronous) or
a callback (asynchronous).

•

NACK. Triggers when an Error is returned to the server either as a response (synchronous) or a callback
(asynchronous).

Arguments
The system provides a list of arguments that could be available when a trigger is invoked. Certain arguments
are only available at specific Trigger Points, if a specified argument is not available at the Trigger Point then
a list of valid arguments will be logged.

In addition to the system provided arguments it is possible to specify custom arguments. These custom
arguments are matched against the MessageProperties of a provided ProcessingMode Event.

When an embedded trigger type is selected such as JYTHON, JEP, or JSON-RPC the arguments (both pro-
vided and custom) will be set as environment variables within the embedded system.

Arguments may be referenced using the instruction field. The instruction field is interpreted using Java
Formatted Strings and the supplied arguments. Arguments are referenced using the following string %1$s
where the 1$ is the argument number (seen next to each argument) and the s denotes the value is a string.

The following link provides more information on formatted strings:

https://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html#summary

FMS Logging Configuration
FMS provides extensive logging functionality using both the standard java logging subsystem and the highly
flexible Log4j logging subsystem. These logging systems can be adjusted as described in appendix ...

Log4j Configuration
The log4j logging facility requires configuration before it can be used effectively. The configuration files and
associated configuration options are as below

• log4j.properties.logfile - This file contains the default settings for FMS when logging to a rolling log
file. Copy this file to log4j.properties in order to send logging information to the file associated with
the log4j.appender.dest2.File entry.

• log4j.properties.syslog - This file contains the default settings for FMS when logging to the system
logger. Copy this file to log4j.properties in order to send logging information to the system logger
associated with the log4j.appender.Syslog.Facility entry.

• log4j.properties.mail - This file contains the default settings for FMS when logging to SMTP. Copy
this file to log4j.properties in order to send logging information to the email address associated with
the log4j.appender.mail.To entry.

• log4j.properties.html - This file contains the default settings for FMS when logging to a HTML page.
Copy this file to log4j.properties in order to send logging information to a HTML page associated with
the log4j.appender.html.File entry.

Note: Logging in any level below WARN is intensive on the system and might slow down message trans-
mission times. For decreased transmission times set the Log Level to either WARN or higher (ERROR) in a
production environment.

The default log4j.properties file typically exists in the same directory that the FMS program files are
installed. This may be changed by adding -Dlog4j.configuration=file:/path/to/log4j.properties
to the java command line as follows

exec java -Dlog4j.configuration=file:///path/to/log4j.properties -server -cp ${FMSLIBDIR} \

-jar ${FMSLIBDIR}/fms.jar $* 2>> ${FMSLOGDIR}/err.log >> ${FMSLOGDIR}/out.log

39

Chapter 3. Configuring FMS

Further details for the log4j logging facility and configuration are available at
http://logging.apache.org/log4j/docs/ and https://www.tutorialspoint.com/log4j/index.htm.

Rotating log4j Files
The log4j log files may be rotated using the configuration directly or alternatively using the logrotate
facility of the operating system as per the following example typically in /etc/logrotate.d/fms for *nix
based operating systems
Rotate script for fms

/usr/local/fms/log/fms.log {

size 10M

missingok

rotate 100

create 644 fms fms

compress

sharedscripts

}

/usr/local/fms/log/error.log {

size 10M

missingok

rotate 100

dateext

create 644 fms fms

compress

sharedscripts

}

/usr/local/fms/log/out.log {

daily

missingok

notifempty

rotate 356

dateext

create 644 fms fms

compress

sharedscripts

}

/usr/local/fms/log/err.log {

daily

missingok

notifempty

rotate 356

dateext

create 644 fms fms

compress

sharedscripts

}

Syslog Configuration
FMS uses the rsyslogd logging facility on linux operating systems. Other operating systems like *nix
and MAC OS X may use syslog for logging purposes which follow a similar approach described here. The
Windows operating system uses it's own logging framework which is not documented here.

The rsyslog facility requires configuration before it can be used. Below are a number of suggested steps to
perform for rsyslog and log4j.properties:

1. By default messages from FMS are logged to files in the /var/log/fms/ directory on *nix systems.
If a different syslog facility, as defined in log4j.properties, is required, for example LOCAL0
then the system logger configuration file, typically /etc/rsyslog.conf for Redhat systems or
/etc/rsyslog.d/50-default.conf for Ubuntu systems , needs to include an entry as follows:

40

Chapter 3. Configuring FMS

User log files

local0.* /var/log/fms/fms-local.log

and the configuration log4j.properties file, with the log4j.appender.Syslog.Facility=LOCAL0
definition, typically as follows
log4j.rootCategory=TRACE, Syslog

log4j.appender.Syslog=org.productivity.java.syslog4j.impl.log4j.Syslog4jAppender

The following entry requires an entry as follows in /etc/rsyslog.d/50-default.conf. Ensure fms-local.log has write permissions for syslog.

log4j.appender.Syslog.Facility=LOCAL0

log4j.appender.Syslog.Protocol=unix_syslog

log4j.appender.Syslog.Threshold=TRACE

log4j.appender.Syslog.layout=org.apache.log4j.PatternLayout

log4j.appender.Syslog.layout.ConversionPattern=%d{ISO8601} %-5p SID:%X{sid} ID:%X{msgid} FROM:%X{from} TO:%X{to} %X{cmd} %m%n

2. Alternatively log messages from FMS may be sent to a remote syslog server by using the following
log4j.properties configuration.
log4j.rootCategory=TRACE, Syslog

log4j.appender.Syslog=org.apache.log4j.net.SyslogAppender

log4j.appender.Syslog.Threshold=DEBUG

log4j.appender.Syslog.layout=org.apache.log4j.PatternLayout

log4j.appender.Syslog.layout.ConversionPattern=fms.flame.business %-5p SID:%X{sid} ID:%X{msgid} FROM:%X{from} TO:%X{to} %X{cmd} %m%n

log4j.appender.Syslog.SyslogHost=syslog.flame.business:6514

3. Restart FMS and reload the system logger in order for the changes to be in effect. Also ensure that
permissons permit writing to file fms-local.log by the rsyslog process of logging locally. Note that
the facility (LOCAL0) is case insensitive.

Altering Log4j Configuration Files

Changing Logging Level
Edit the file log4j.properties and adjust the log4j.rootCategory= value. log4j logging levels are de-
scribed in the Section called Levels of Granularity in Appendix C.

Note that when altering these configuration files, the server MUST be restarted in order for any changes to
take effect. Information on the server can be located in the Section called FMS Installation in Chapter 2.

41

Chapter 4. AS4 Client Utility

FMS is the AS4 light client used for sending messages (push) or retreiving messages (pull) from a FMS or
other AS4 compliant server situated at remote business partner.

AS4 Light Client Invocation
Invoke the FMS AS4 push and pull client utility as follows to display usage requirements on a Linux system
java -jar fmsclient.as4.jar -?

or as follows on MS Windows®
\Program Files\fms\client\fms-as4.exe -?

Usage: java -jar fmsclient.as4.jar <arguments> <XML_File>

Where: <XML_File> is the optional XML Document to include in the SOAP body

And <arguments> are:

-a <Attachment>: Repeatable attachment references in the following generic format \

"key1:value1;key2:value2;key3:value3[;key4:value4]" with example being \

"filename:mypayload.xml;content-id:ABC123;mimetype:application/xml;encoding:\

[7bit|quoted-printable|8bit|base64|binary];description:My Payload file;\

propertyKey:propertyValue" \

where filename is mandatory and specifies either a local file or URL based file, \

and the rest optional. Semicolons ";" MUST not be used as part of the keys or values. \

Use this should an xml payload be required outside the body in the SOAP envelope

-action <Action>: BusinessInfo.Action, overrides the processing mode businessInfo.Action

-ad <Attachment Directory>: Directory in which attachments received will be stored. \

Default: attachments

-ag <Agreement Reference>: AgreementRef, overrides the processing mode agreementRef

-at <Send Time>: Send message at current time + time in milliseconds or at specified \

future date in format "yyyy-MM-dd’T’HH:mm:ss.SSS" eg. 2100-12-31T00:00:00.000

-c <Conversation ID>: Conversation ID, overrides the processing mode conversation ID

-batch <Argument File>: Contains a set of arguments for use in batch processing. \

Arguments in this file will override any argument set on the command line

-bodyID: Enable the SOAP Body PayloadInfo href identifier

-d: Enable DEBUG mode. Default: false

-e <Event>: Processing Mode event for this message

-enc <Encryption Alias>: Alias used to access the remote partner public encryption key \

from the keystore

-error <Error File>: File to which any error messages and debug output will be written \

to - default is stderr

-file <Output File>: File to which any received response will be written to - default \

is stdout

-from <Sender>: Sender identifier to determine which leg of the journey this message \

is for. Required.

-fromType <Sender@Type>: Sender type attribute - only used if from party is different \

between the command line and the p-mode

-fromRole <Sender Role>: Sender role - only used if from party is different between \

the command line and the p-mode

-h <Host>: Destination host URL. Note that IPv6 addresses must be encapsulated in \

square brackets Eg. -h https://[fe80:8::106a:9125:18a9:9f64%en0]:6443/as4s

-k <KeyStore Location>: File system path to the KeyStore. Default: certs

-ksp <KeyStore Password>: Password used to access the KeyStore. Default: changeit

-ka <SSL Private Key Alias>: Alias used to access the SSL Private Key in the KeyStore. \

Default: fmsrns

-kp <SSL Private Key Password>: Password used to access the SSL Private Key in the \

KeyStore. Default: fmsrns

-l <Licence file>: Path to the licence file. Default: fms.lcn

-m <Message Identifier>: Message identifier, leave blank to auto-generate

-mp <Message Properties>: Optional message properties with format \

"-mp key1:value1 -mp key2:value2". Eg \

"-mp originalSender:partyA -mp finalRecipient:partyB"

-messageFile <Message Output File>: File to save outbound message SOAP envelope if specified

-noSystemExit: Disable system exit. If set then System.exit(status) will not be invoked \

on program termination and return status will be returned to stdout. Default: disabled

-pi <PMode ID>: Processing Mode ID, overrides the processing mode ID

-pm <Processing Mode>: Processing mode configuration file name. Required.

-pp <Part Properties>: Optional repeatable part properties for the main XML payload in \

42

Chapter 4. AS4 Client Utility

the body (if specified) with format "-pp key1:value1 -pp key2:value2". \

Eg "-pp invoiceID:INV0001 -pp http\://mydomain.com\:invoiceID:INV\:9999"

-r <Reference Message Identifier>: Reference to the message identifier provided

-rc <Receiving Security Context File>: Receiving security context definition \

file (http://java.sun.com/xml/ns/xwss/config)

-rs: Enable response security requirement, will validate security response and \

will throw errors if security does not match requirement

-rcpt <In Receipt to SOAP Message>: Create an AS4 receipt for the provided SOAP Message

-s <SSL Context>: Typically one of [SSL, SSLv3, TLS, TLSv1, TLSv1.1, TLSv1.2, TLSv1.3]. Default: TLSv1.2

-sa <Sign Key Alias>: Alias used to access the Private Key for signing in the KeyStore. \

Default: fmsrns

-service <Service>: BusinessInfo.Service, overrides the processing mode businessInfo.Service

-serviceType <Service@Type>: BusinessInfo.Service@Type, overrides the processing mode \

businessInfo.Service@Type attribute

-sc <Security Context File>: Sending security context definition file

-scit: Enable Security Context includeTimestamp Flag. Default: false

-suffix: MessageId Suffix. Default: initiating party or localhost

-sp <Sign Key Password>: Password used to access the Private Key for signing in the \

KeyStore. Default: fmsrns

-st <sslTruststore Location>: Optional file system path to the sslTruststore. \

May be the same as keystore. Default: java cacerts

-stsp <sslTruststore Password>: Optional password used to access the ssl Trust Store. \

Default: changeit

-t <Timeout>: Connection timeout in milliseconds (0 disables timeouts). Default: 30000

-T <Timeout>: Response timeout in milliseconds (0 disables timeouts). Default: 30000

-to <Recipient>: Recipient identifier to determine which leg of the journey this \

message is for. Required.

-toType <Recipient@Type>: Recipient type attribute - only used if to party is \

different between the command line and the p-mode

-toRole <Recipient Role>: Recipient role - only used if to party is different \

between the command line and the p-mode

-u: Disable SSL. Default: enabled

-v: Version

-z: Optional command line option for compressing external payloads. If not set then the processing mode \

"pmode:useCompression" setting will be used to determine if external payloads must be compressed.

-X: Dump security providers and algorithms

AS4 Light Client Examples
The following example illustrates invoking the AS4 light client and pushing a puchase order and associated
README external payload to a remote server.
java -jar fmsclient.as4.jar -h http://remotehost.com:8080/as4 -sc sc.xml -e send -pm as4push.pmode \

-from POService.flame.business -to POService.flame.business \

-enc flameserver \

-a ’filename:README;content-id:id-29996-2011-10-07-15:45:38;mimetype:text/plain; \

description:Compressed README’ ProcessPurchaseOrder.xml

A successful message push should return a receipt as follows
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>

<eb:Messaging xmlns:eb="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">

<eb:SignalMessage>

<eb:MessageInfo>

<eb:Timestamp>2011-10-07T13:45:46.144Z</eb:Timestamp>

<eb:MessageId>FMS-A-20111007-154542.442-0.5731733724663212@POService.flame.business< \

/eb:MessageId>

<eb:RefToMessageId>AS4-132DEA1D1BB-6990F@POService.flame.business</eb:RefToMessageId>

</eb:MessageInfo>

<eb:Receipt>

<ebbpsig:NonRepudiationInformation xmlns:ebbpsig= \

"http://docs.oasis-open.org/ebxml-bp/ebbp-signals-2.0">

<ebbpsig:MessagePartNRInformation>

<ebbpsig:MessagePartIdentifier/>

</ebbpsig:MessagePartNRInformation>

43

Chapter 4. AS4 Client Utility

</ebbpsig:NonRepudiationInformation>

</eb:Receipt>

</eb:SignalMessage>

</eb:Messaging>

</env:Header>

<env:Body/>

</env:Envelope>

The following example illustrates invoking the AS4 client and pulling an acknowledge puchase order from
a remote server.
java -jar fmsclient.as4.jar -h http://remotehost.com:8080/as4 -e pull -from POService.flame.business \

-to POService.flame.business -pm as4pull.pmode

FMS AS4 Light Client Push PMode
The following example provides a typical p-mode that is used by the send example above. Various p-mode
settings are overriden by the command line including both initiating and responding parties.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<pmode:ProcessingMode xmlns:tg="http://fms.flame.business/FMS/schema/Trigger"

xmlns:pmode="http://fms.flame.business/FMS/schema/ProcessingMode">

<!-- Copyright (c) Flame Computing Enterprises cc 2007 - 2019. All rights reserved -->

<!-- RCSfile: as4push.pmode,v Revision: 1.1.2.4 Date: 2019-02-14 10:17:34 -->

<pmode:specification>AS4</pmode:specification>

<pmode:general>

<!-- overrride Agreement using -ag <agreementRef> commandLine option -->

<pmode:Agreement></pmode:Agreement>

<!-- overrride ConversationID using ’-c <conversation id>’ commandLine option -->

<pmode:ConversationID>0001</pmode:ConversationID>

<pmode:MEP>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay</pmode:MEP>

<pmode:MEPbinding>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/push</pmode:MEPbinding>

<pmode:initiating>

<!-- overrride initiating party using ’-from <party>’ commandLine option -->

<pmode:party>undefined-initiating</pmode:party>

<!-- override initiating role using ’-fromRole <role>’ commandLine option -->

<pmode:role>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator</pmode:role>

</pmode:initiating>

<pmode:responding>

<!-- overrride responding party using -to <party> commandLine option -->

<pmode:party>undefined-responding</pmode:party>

<!-- override responding role using ’-toRole <role>’ commandLine option -->

<pmode:role>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder</pmode:role>

</pmode:responding>

</pmode:general>

<pmode:event pmode:ID="send">

<pmode:protocol>

<!-- overrride address using ’-h <remoteHost url>’ commandLine option -->

<pmode:address>http://localhost:8080/as4</pmode:address>

<pmode:SOAPVersion>1.2</pmode:SOAPVersion>

<!-- overrride useCompression using ’-z’ commandLine option -->

<pmode:useCompression>true</pmode:useCompression>

<pmode:retryThreshold>3</pmode:retryThreshold>

<pmode:retryInterval>60</pmode:retryInterval>

44

Chapter 4. AS4 Client Utility

</pmode:protocol>

<pmode:businessInfo>

<pmode:service>http://docs.oasis-open.org/ebxml-msg/as4/200902/service</pmode:service>

<pmode:action>http://docs.oasis-open.org/ebxml-msg/as4/200902/action</pmode:action>

<pmode:maxSize>0</pmode:maxSize>

<pmode:MPC></pmode:MPC>

<pmode:MessageProperty>

<pmode:name>originalSender</pmode:name>

<pmode:description>original sender</pmode:description>

<pmode:datatype>string</pmode:datatype>

<pmode:usage>optional</pmode:usage>

</pmode:MessageProperty>

<pmode:MessageProperty>

<pmode:name>finalRecipient</pmode:name>

<pmode:description>final recipient</pmode:description>

<pmode:datatype>string</pmode:datatype>

<pmode:usage>optional</pmode:usage>

</pmode:MessageProperty>

<pmode:PayloadProfile>

<pmode:ContentID>manifest</pmode:ContentID>

<pmode:mimeType>application/xml</pmode:mimeType>

<pmode:schemaFile></pmode:schemaFile>

<pmode:maxSize>0</pmode:maxSize>

<pmode:usage>optional</pmode:usage>

</pmode:PayloadProfile>

</pmode:businessInfo>

<pmode:security>

<pmode:WSSVersion>1.1</pmode:WSSVersion>

<!-- defined by -sc sc.xml security context file -->

<pmode:SOAPSecurityLevel>SIGN_ENCRYPT</pmode:SOAPSecurityLevel>

<!-- defined by -sc sc.xml security context file -->

<pmode:MIMESecurityLevel>SIGN_ENCRYPT</pmode:MIMESecurityLevel>

<pmode:X509>

<!-- signature settings overriden by the security context file using

’-sc <securityContext.xml>’ -->

<pmode:signature>

<!-- CanonicalizationMethod - defaults to http://www.w3.org/2001/10/xml-exc-c14n# -->

<!-- defined by server property SIGNATURE_CANONICALISATION_ALGORITHM -->

<!-- SignatureMethod - defined by server property SIGNATURE_ALGORITHM -->

<pmode:algorithm>http://www.w3.org/2001/04/xmldsig-more#rsa-sha256</pmode:algorithm>

<!-- DigestMethod as used for all targets - defined by

server property SIGNATURE_DIGEST_ALGORITHM -->

<pmode:hashFunction>http://www.w3.org/2001/04/xmlenc#sha256</pmode:hashFunction>

<pmode:CryptPart

pmode:namespace="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">

<pmode:element>Messaging</pmode:element>

</pmode:CryptPart>

<pmode:CryptPart pmode:namespace="http://www.w3.org/2003/05/soap-envelope">

<pmode:element>Body</pmode:element>

</pmode:CryptPart>

<pmode:CryptPart>

<!-- transform algorithm defaults to

http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform -->

<pmode:element>cid:*</pmode:element>

</pmode:CryptPart>

</pmode:signature>

<!-- encryption settings overriden by the security context file using

’-sc <securityContext.xml>’ -->

<pmode:encryption>

<!-- defined by server property ENCRYPTION_SYMMETRIC_KEY_ALGORITHM -->

<pmode:algorithm>http://www.w3.org/2009/xmlenc11#aes128-gcm</pmode:algorithm>

<pmode:certificate></pmode:certificate>

45

Chapter 4. AS4 Client Utility

<!-- <pmode:minimumStrength>256</pmode:minimumStrength>

supported but not used here -->

<pmode:CryptPart

pmode:namespace="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">

<pmode:element>Messaging</pmode:element>

</pmode:CryptPart>

<pmode:CryptPart pmode:namespace="http://www.w3.org/2003/05/soap-envelope">

<pmode:element>Body</pmode:element>

</pmode:CryptPart>

<pmode:CryptPart>

<!-- transform algorithm defaults to

http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform -->

<pmode:element>cid:*</pmode:element>

</pmode:CryptPart>

</pmode:encryption>

</pmode:X509>

<pmode:usernameToken>

<pmode:PModeAuthorize>false</pmode:PModeAuthorize>

<pmode:username></pmode:username>

<pmode:password></pmode:password>

<pmode:digest>false</pmode:digest>

<pmode:nonce>false</pmode:nonce>

<pmode:created>false</pmode:created>

</pmode:usernameToken>

<pmode:sendReceipt> <!-- defined on server -->

<pmode:enabled>true</pmode:enabled>

<pmode:replyPattern>response</pmode:replyPattern>

<pmode:includeUsernameToken>false</pmode:includeUsernameToken>

</pmode:sendReceipt>

</pmode:security>

</pmode:event>

</pmode:ProcessingMode>

FMS AS4 Light Client Pull PMode
The following example provides a typical p-mode that is used by the pull example above. Various p-mode
settings are overriden by the command line including both initiating and responding parties.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<pmode:ProcessingMode xmlns:tg="http://fms.flame.business/FMS/schema/Trigger"

xmlns:pmode="http://fms.flame.business/FMS/schema/ProcessingMode">

<!-- Copyright (c) Flame Computing Enterprises cc 2007 - 2019. All rights reserved -->

<!-- RCSfile: as4pull.pmode,v Revision: 1.1.2.2 Date: 2019-02-14 10:17:34 -->

<pmode:specification>AS4</pmode:specification>

<pmode:general>

<!-- overrride Agreement using ’-ag <agreementRef>’ commandLine option -->

<pmode:Agreement></pmode:Agreement>

<!-- overrride ConversationID using ’-c <conversation id>’ commandLine option -->

<pmode:ConversationID></pmode:ConversationID>

<pmode:MEP>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay</pmode:MEP>

<pmode:MEPbinding>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pull</pmode:MEPbinding>

<pmode:initiating>

<!-- override initiating party using -from <party> commandLine option -->

<pmode:party>undefined-initiating</pmode:party>

<!-- override initiating role using -fromRole <party> commandLine option -->

<pmode:role>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator</pmode:role>

</pmode:initiating>

<pmode:responding>

<!-- override responding party using ’-to <party>’ commandLine option -->

46

Chapter 4. AS4 Client Utility

<pmode:party>undefined-responding</pmode:party>

<!-- override responding role using -toRole <party> commandLine option -->

<pmode:role>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder</pmode:role>

</pmode:responding>

</pmode:general>

<pmode:event pmode:ID="pull">

<pmode:protocol>

<!-- overrride address using ’-h <remoteHost url>’ commandLine option -->

<pmode:address>https://fmstest.flame.business:8443/AS4-C3</pmode:address>

<pmode:SOAPVersion>1.2</pmode:SOAPVersion>

<pmode:useCompression>true</pmode:useCompression>

<pmode:retryThreshold>3</pmode:retryThreshold>

<pmode:retryInterval>60</pmode:retryInterval>

</pmode:protocol>

<pmode:businessInfo>

<pmode:service pmode:type="cenbii-procid-ubl">urn:www.cenbii.eu:profile:bii54:ver3.0</pmode:service>

<pmode:action>pull-action</pmode:action>

<pmode:maxSize>0</pmode:maxSize>

<pmode:MPC>Flame.Invoice.MPC</pmode:MPC>

</pmode:businessInfo>

<pmode:security>

<pmode:WSSVersion>1.1</pmode:WSSVersion>

<pmode:SOAPSecurityLevel>SIGN_ENCRYPT</pmode:SOAPSecurityLevel>

<pmode:MIMESecurityLevel>SIGN_ENCRYPT</pmode:MIMESecurityLevel>

<pmode:X509>

<pmode:signature> <!-- overriden by the security context file using ’-sc <securityContext.xml>’ -->

<!-- CanonicalizationMethod - defaults to http://www.w3.org/2001/10/xml-exc-c14n# -->

<!-- defined by server property SIGNATURE_CANONICALISATION_ALGORITHM -->

<!-- SignatureMethod - defined by server property SIGNATURE_ALGORITHM -->

<pmode:algorithm>http://www.w3.org/2001/04/xmldsig-more#rsa-sha256</pmode:algorithm>

<!-- DigestMethod as used for all targets - defined by server property SIGNATURE_DIGEST_ALGORITHM -->

<pmode:hashFunction>http://www.w3.org/2001/04/xmlenc#sha256</pmode:hashFunction>

<pmode:CryptPart pmode:namespace="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">

<pmode:element>Messaging</pmode:element>

</pmode:CryptPart>

<pmode:CryptPart pmode:namespace="http://www.w3.org/2003/05/soap-envelope">

<pmode:element>Messaging</pmode:element>

</pmode:CryptPart>

</pmode:signature>

<pmode:encryption> <!-- overriden by the security context file using ’-sc <securityContext.xml>’ -->

<!-- defined by server property ENCRYPTION_SYMMETRIC_KEY_ALGORITHM -->

<pmode:algorithm>http://www.w3.org/2009/xmlenc11#aes128-gcm</pmode:algorithm>

<pmode:certificate></pmode:certificate>

<pmode:CryptPart pmode:namespace="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">

<pmode:element>Messaging</pmode:element>

<pmode:element>CollaborationInfo</pmode:element>

<pmode:element>PayloadInfo</pmode:element>

</pmode:CryptPart>

<pmode:CryptPart pmode:namespace="http://www.w3.org/2003/05/soap-envelope">

<pmode:element>Body</pmode:element>

</pmode:CryptPart>

<pmode:CryptPart>

<!-- transform algorithm defaults to

http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform -->

<pmode:element>cid:*</pmode:element>

</pmode:CryptPart>

</pmode:encryption>

</pmode:X509>

<pmode:usernameToken>

<pmode:PModeAuthorize>true</pmode:PModeAuthorize>

<pmode:username>flame</pmode:username>

<pmode:password>secret</pmode:password>

<pmode:digest>true</pmode:digest>

<pmode:nonce>true</pmode:nonce>

47

Chapter 4. AS4 Client Utility

<pmode:created>true</pmode:created>

</pmode:usernameToken>

<pmode:sendReceipt>

<pmode:enabled>false</pmode:enabled>

<pmode:replyPattern>response</pmode:replyPattern>

<pmode:includeUsernameToken>false</pmode:includeUsernameToken>

</pmode:sendReceipt>

</pmode:security>

</pmode:event>

</pmode:ProcessingMode>

FMS AS4 Light Client Push Security Context
The following example provides a typical security context file that may be used by the send example above
when no signing and no encryption is required. The various p-mode security settings are overriden by the
security context file including the signature and encryption settings.
<xwss:SecurityConfiguration dumpMessages=’false’

retainSecurityHeader=’true’ enableDynamicPolicy=’false’ xmlns:xwss=’http://java.sun.com/xml/ns/xwss/config’>

<!-- RCSfile: sc.xml,v Revision: 1.1.2.3 Date: 2019-02-13 06:37:50 -->

<!-- Also see

http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html -->

<!-- <xwss:Timestamp/> manual signing of timestamp -->

<!-- No sign and no encrypt -->

</xwss:SecurityConfiguration>

The following example provides a typical security context file that may be used by the send example above
when signing but no encryption is required. The various p-mode security settings are overriden by the secu-
rity context file including the signature and encryption settings.
<xwss:SecurityConfiguration dumpMessages=’false’

retainSecurityHeader=’true’ enableDynamicPolicy=’false’ xmlns:xwss=’http://java.sun.com/xml/ns/xwss/config’>

<!-- RCSfile: sc.sign.xml,v Revision: 1.1.2.2 Date: 2019-02-13 07:02:45 -->

<!-- Also see

http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html -->

<!-- <xwss:Timestamp/> manual signing of timestamp -->

<!-- sign soap messaging, body and payload -->

<xwss:Sign includeTimestamp="false"> <!-- set this to false to ensure no sha1 sig is added -->

<xwss:X509Token certificateAlias=’fmsrns’/> <!-- remove keyReferenceType for bst -->

<xwss:CanonicalizationMethod algorithm=’http://www.w3.org/2001/10/xml-exc-c14n#’/>

<xwss:SignatureMethod algorithm=’http://www.w3.org/2001/04/xmldsig-more#rsa-sha256’/>

<xwss:SignatureTarget type=’uri’ value=’cid:*’ enforce=’false’>

<xwss:DigestMethod algorithm=’http://www.w3.org/2001/04/xmlenc#sha256’/>

<xwss:Transform

algorithm=’http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform’/>

</xwss:SignatureTarget>

<xwss:SignatureTarget type=’qname’

value=’{http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/}Messaging’ enforce=’false’>

<xwss:DigestMethod algorithm=’http://www.w3.org/2001/04/xmlenc#sha256’/>

<xwss:Transform algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

<xwss:AlgorithmParameter name="InclusiveNamespaces" value="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</xwss:Transform>

</xwss:SignatureTarget>

<xwss:SignatureTarget type=’qname’ value=’{http://www.w3.org/2003/05/soap-envelope}Body’ enforce="false">

<xwss:DigestMethod algorithm=’http://www.w3.org/2001/04/xmlenc#sha256’/>

<xwss:Transform algorithm=’http://www.w3.org/2001/10/xml-exc-c14n#’>

<xwss:AlgorithmParameter name="InclusiveNamespaces" value="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</xwss:Transform>

</xwss:SignatureTarget>

</xwss:Sign>

</xwss:SecurityConfiguration>

48

Chapter 4. AS4 Client Utility

The following example provides a typical security context file that may be used by the send example above
when encryption but no signing is required. The various p-mode security settings are overriden by the secu-
rity context file including the signature and encryption settings.
<xwss:SecurityConfiguration dumpMessages=’false’ retainSecurityHeader=’true’

enableDynamicPolicy=’false’ xmlns:xwss=’http://java.sun.com/xml/ns/xwss/config’>

<!-- RCSfile: sc.enc.xml,v Revision: 1.1.2.1 Date: 2019-02-13 06:38:57 -->

<!-- Also see

http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html -->

<!-- <xwss:Timestamp/> manual signing of timestamp -->

<!-- encrypt payload -->

<xwss:Encrypt>

<xwss:X509Token certificateAlias=’fmsrns’/> <!-- remove keyReferenceType for bst -->

<xwss:KeyEncryptionMethod algorithm="http://www.w3.org/2009/xmlenc11#rsa-oaep"/>

<xwss:DataEncryptionMethod algorithm="http://www.w3.org/2009/xmlenc11#aes128-gcm"/>

<xwss:EncryptionTarget type=’qname’ value=’{http://www.w3.org/2003/05/soap-envelope}Body’ enforce="false"/>

<xwss:EncryptionTarget type=’uri’ value=’cid:*’ enforce=’true’/>

</xwss:Encrypt>

</xwss:SecurityConfiguration>

The following example provides a typical security context file that may be used by the send example above
when both signing and encryption are required. The various p-mode security settings are overriden by the
security context file including the signature and encryption settings.
<xwss:SecurityConfiguration dumpMessages=’false’ retainSecurityHeader=’true’

enableDynamicPolicy=’false’ xmlns:xwss=’http://java.sun.com/xml/ns/xwss/config’>

<!-- RCSfile: sc.signenc.xml,v Revision: 1.1.2.1 Date: 2019-02-13 06:38:46 -->

<!-- Also see

http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html -->

<!-- <xwss:Timestamp/> manual signing of timestamp -->

<!-- sign soap messaging, body and payload and encrypt payload -->

<xwss:Sign includeTimestamp="false"> <!-- set this to false to ensure no sha1 sig is added -->

<xwss:X509Token certificateAlias=’fmsrns’/> <!-- remove keyReferenceType for bst -->

<xwss:CanonicalizationMethod algorithm=’http://www.w3.org/2001/10/xml-exc-c14n#’/>

<xwss:SignatureMethod algorithm=’http://www.w3.org/2001/04/xmldsig-more#rsa-sha256’/>

<xwss:SignatureTarget type=’uri’ value=’cid:*’ enforce=’false’>

<xwss:DigestMethod algorithm=’http://www.w3.org/2001/04/xmlenc#sha256’/>

<xwss:Transform

algorithm=’http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform’/>

</xwss:SignatureTarget>

<xwss:SignatureTarget type=’qname’

value=’{http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/}Messaging’ enforce=’false’>

<xwss:DigestMethod algorithm=’http://www.w3.org/2001/04/xmlenc#sha256’/>

<xwss:Transform algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

<xwss:AlgorithmParameter name="InclusiveNamespaces" value="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</xwss:Transform>

</xwss:SignatureTarget>

<xwss:SignatureTarget type=’qname’ value=’{http://www.w3.org/2003/05/soap-envelope}Body’ enforce="false">

<xwss:DigestMethod algorithm=’http://www.w3.org/2001/04/xmlenc#sha256’/>

<xwss:Transform algorithm=’http://www.w3.org/2001/10/xml-exc-c14n#’>

<xwss:AlgorithmParameter name="InclusiveNamespaces" value="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</xwss:Transform>

</xwss:SignatureTarget>

</xwss:Sign>

<xwss:Encrypt>

<xwss:X509Token certificateAlias=’fmsrns’/> <!-- remove keyReferenceType for bst -->

<xwss:KeyEncryptionMethod algorithm="http://www.w3.org/2009/xmlenc11#rsa-oaep"/>

<xwss:DataEncryptionMethod algorithm="http://www.w3.org/2009/xmlenc11#aes128-gcm"/>

<xwss:EncryptionTarget type=’qname’ value=’{http://www.w3.org/2003/05/soap-envelope}Body’ enforce="false"/>

<xwss:EncryptionTarget type=’uri’ value=’cid:*’ enforce=’true’/>

</xwss:Encrypt>

</xwss:SecurityConfiguration>

49

Chapter 4. AS4 Client Utility

Interpreting AS4 Light Client Results
Once execution has completed, the AS4 Client Utility will return an exit code. These codes are documented
in the the Section called AS4 Client Return Values in Chapter 5. Further messages are available in stdout and
stderr.

All log messages from the AS4 Client Utility are written to stderr. These messages include errors from the
Server as well as any transmission or validation errors.

50

Chapter 5. RosettaNet/ebXML Application Configuration

This section describes the FMS ebXML and RosettaNet server configuration and business application config-
uration requirements when interfacing to a business application.

ebXML and RosettaNet Client Utility
fms-client.jar is an interface utility that must be invoked by the business application to communicate
XML business documents via FMS to a remote business partner.

Invocation
Invoke the FMS light client utility as follows to display usage requirements
java -jar fms-client.jar -?

Usage: java -jar fms-client.jar

Where:

-a "<attachment File path>:<attachment mime type>:<attachment description>:<attachmentID>" \

can appear 0..n times.

-b <Buffer Size> The send buffer size in bytes to use. Defaults to: 32768

-c <P-Mode ID> The Processing Mode ID to use as a configuration for this request.

-d <recipientPartnerIdentifier> The Partner Identifier of the recipient. Defaults to: null

-e <Event> The Processing Mode event that this message should use. Defaults to the first Event \

in the specified P-Mode

-f <XML File path> The file path to the XML file that should be sent. Required...

-g Enable GZIP Stream Compression for faster upload over slow connections

-h <Host Name> The final destination of the packaged envelope. Only for Test environments, \

actual destination in Production environments is defined in the server configuration files.

-i <Initial Timeout> A timeout in milliseconds that dictates the timeout required before an ACK \

is received during transmission from the local FMS server, refer to -t <ReceiptTimeout> for the \

timeout while waiting for a response from the remote server. Defaults to: 10000

-k <Keystore Location> The location of the keystore that contains the SSL certificates used \

during SSL communication. Defaults to: /etc/ssl/certs/java/cacerts (ubuntu, debian) or /etc/pki/java/cacerts (redhat, fedora, centos). \

Not currently used - pending SSL client authentication.

-l <recipientLocation> The case sensitive recipient location ID. Defaults to: null

-m <contentID> A content instance tracking identification string.

-q <messageID> Perform an Acknowledgement query on the provided messageID

-p <MPC> The Message Partition Channel for use with this PullRequest

-r <Retry Attempts> The amount of retries that should be attempted before giving up. \

Defaults to: 3

-s <Schema Type> The Schema Type to be used for this transaction. As defined in the \

Collaboration Protocol Agreement (CPA) (If Applicable). (Case Sensitive). Defaults to: null

-t <Receipt Timeout> A timeout in milliseconds that should trigger if a Receipt is not \

received from the FMS server for both server and client, refer to -i <Initial Timeout> for \

upload timeouts. Not required if -w is specified. Defaults to: 300000

-v Print version and exit.

-w Do not wait for a Receipt Acknowledgement before exiting, should be specified with -J in case \

a followup acknowledgement check (-Q) needs to be performed.

-A <Action Type> The Action Type to be used for this transaction. As defined in the \

Collaboration Protocol Agreement (CPA) (If Applicable). (Case Sensitive). Defaults to: null

-C <CPA UID | CPA URL> The Unique ID for the CPA to use for this transaction or directly to \

the CPA. Defaults to: null

-D <senderPartnerIdentifier> The Partner Identifier of the sender. Defaults to: null

-E <ExternalProperties> A comma-delimited Variable=Value list which will be inserted into the \

transport envelope (if applicable). e.g: -E "MessageIdentifier=ABC123, \

ContentFilename=InvoiceABC123.xml"

-H <serverHostName> The server that this client should connect to. Defaults to: localhost

-I Ignore the Message ID store ’.FMS-ClientMessageID.tmp’ when sending requests.

-J Append to the unacknowledged Message ID(s) stored in the ’.FMS-ClientMessageID.tmp’ file if \

it exists.

-L <senderLocation> The case sensitive sender location ID. Defaults to: null

-M <refToMessageID> The reference to message identifier that this message is in response to \

(If Applicable).

-O <logLevel> The log level to use when sending requests. One of {OFF, SEVERE, WARNING, \

INFO, CONFIG, FINE, FINER, FINEST, ALL} (Case InSensitive). Defaults to: OFF

-Q Perform an Acknowledgement query on the messageID(s) stored in the file \

’.FMS-ClientMessageID.tmp’. Only available if the configuration database is enabled.

-P <serverPort> The port number that this client should connect to. Defaults to: 29350

51

Chapter 5. RosettaNet/ebXML Application Configuration

-R <Retry wait time> The time, in milliseconds, between retry attempts. Defaults to: 1000

-S Turn off SecureSocketLayer (SSL) during upload. Not recommended.

-T <Connection Type> The connection type to use. \

One of {<acronym>RosettaNet</acronym>, <acronym>ebXML</acronym>} \

(Case Sensitive). Defaults to: ebXML.

Got: [-?]

Interpreting Light Client Results
Once execution has completed, the Client Utility will return an exit code. These codes are documented in the
the Section called ebXML and RosettaNet Client Return Values. Further messages are available in stdout and
stderr.

All log messages from the Client Utility are written to stderr. These messages include errors from the Server
as well as any transmission or validation errors.

If transmission of the envelope is successful and a message from the Remote Server has been received it
will appear in stdout. This message is in XML format and could be a SOAP Message (ebXML) or one of
Exception or ReceiptAcknowledgment (RosettaNet).

The layout of a RosettaNet Exception XML object:
1 1 Exception

2 1 |-- ExceptionDescription

3 1 | |-- errorClassification.GlobalMessageExceptionCode

4 1 | |-- errorDescription.FreeFormText

5 0..1 | |-- offendingMessageComponent.GlobalMessageComponentCode

6 1 |-- GlobalExceptionTypeCode

Where:

• GlobalMessageExceptionCode - Identifies the specific error which occurred during message processing.

• FreeFormText - Unformatted text.

• GlobalMessageComponentCode - Identifies a message component, e.g. Preamble, Delivery Header, Ser-
vice Header.

• GlobalExceptionTypeCode - A unique identifier specifying the type of exception encountered during mes-
sage processing, see the Section called RosettaNet® Error Messages

The layout of a RosettaNet ReceiptAcknowledgment XML object:
1 1 ReceiptAcknowledgment

2 0..1 |-- NonRepudiationInformation

3 1 | |-- OriginalMessageDigest

Where:

• OriginalMessageDigest - The base-64 encoded digest of the entire original mime message received. The
digest MUST use the same algorithm as the original signed message.

ebXML/RosettaNet Client SSL Configuration
fms-client.jar may be used to communicate messages using no encryption to the server or using a secure
connection to the server.

Before a secure connection can be made to the server, SSL MUST be configured. Below are a number of steps
to follow in order to ensure a secure connection between the client and server:

52

Chapter 5. RosettaNet/ebXML Application Configuration

1. An export of the server certificate must be done in order to import the certificate on the client side. See
the Section called Exporting a Public Key (Certificate) in Chapter 2

2. Import the server certificate to the default java keystore on the client side. See the Section called Import-
ing Public Keys (Certificates) into the Client Keystore in Chapter 2

Attachments
To include an attachment with an XML document include the argument -a <attachment file
path>:<attachment mime type>:<attachment description> for each attachment at the end of the
invocation statement.

Table 5-1. Attachment Usage

Argument Description

<attachment file path> The attachment’s exact location in URL

<attachment mime type> The attachment’s format. See the table below for
which formats are supported and what their mime
types are.

<attachment description> A short description of the attachment. eg: "Price List
2008"

Table 5-2. Attachment Mime Types

Supported Mime Types:

AS4 Client Return Values
fmsclient.as4.jar returns the following values on completion

• 0 - Ok

• 1 - Usage - eg when invoking with incorrect command line arguments

• 2 - Connect Exception - occurs if a network connection is not available. Eg. network cable unplugged

• 3 - SSL Exception - could not validate key - only from 5.3.4-2

If this return value is accompanied with ClientException - PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid
certification path to requested target then this may be due to the SSL certificate verification
failing either because the root certificate does not exist or has been revoked.

• 4 - Timeout - occurs on read timeout and on establishing a connection timeout

• 5 - not currently used

• 6 - NPE - internal null pointer error

• 7 - not currently used

• 8 - not currently used

• 9 - not currently used

• 10 - Unknown error - unidentifiable error condition. Use ’-d’ command line switch to debug.

ebXML and RosettaNet Client Return Values
fms-client.jar returns the following values on completion

53

Chapter 5. RosettaNet/ebXML Application Configuration

• 0 - No transmission error.

• 1 - Timeout - Socket timeout occurred, either on client or remote servers.

• 2 - IO Exception - This ranges from failure to connect to errors in the underlying protocol.

• 3 - SSL Exception - An error occurred while configuring or negotiating a SSL connection.

• 4 - XML Parse Exception - An error occurred while attempting to parse and validate the transmitted XML
headers and content.

• 5 - Version Error - There is a difference between this client’s version and the server’s. Read stderr for
location to download a new client.

• 6 - File not Found Error - The supplied files could not be located, refer to stderr as to the location of the
failed files.

• 7 - Security Error - There was a failure in encryption or digital signatures, refer to server logs for more
information.

• 8 - CPA Error - The supplied CPA URL/UID was unretrievable or unreadable, refer to server logs for more
information.

• 9 - Acknowledgement Query - The result of the Acknowledgement Query

• 10 - Protocol Exception - There was an error in the underlying protocol, refer to server logs for more
information.

• 11 - Sent Unacknowledged - The request has been transmitted to the server but the client will not wait for
an acknowledgement.

• 12 - Partner Identifier Exception - There was a misconfiguration or error while using the supplied Partner
Identifier.

• 13 - Empty Message Partition Channel - There were no messages avilable or the MPC was not found while
performing a PullRequest.

• 14 - ProcessingMode Error - The server encountered a misconfiguration or the supplied data does not
correlate with the supplied ProcessingMode

• 15 - HTTP Status code not accepted - The server received an error HTTP status code from the remote
server.

• 16 - Unknown Error - The server or the client encounted an unknown error, read stderr for error informa-
tion.

ebXML Error Messages
Even though a return code of 0 was received, an Error might have occurred on the remote servers. If an ex-
ception occurred then fms-client.jar can return the following ebXML messages in the Error XML element
of the SOAP message which is printed to stdout after invocation.

If no error occurred then the SOAP Message returned to stdout should contain the SignalMessage Receipt
element.

Table 5-3. ebMS Processing Errors

Error Code Description Severity Category Semantics

EBMS:0001 ValueNotRecognized failure Content Although the message
document is well formed and
schema valid, some
element/attribute contains a
value that could not be
recognized and therefore could
not be used by the MSH.

54

Chapter 5. RosettaNet/ebXML Application Configuration

Error Code Description Severity Category Semantics
EBMS:0002 FeatureNotSupported warning Content Although the message

document is well formed and
schema valid, some
element/attribute value cannot
be processed as expected
because the related feature is not
supported by the MSH.

EBMS:0003 ValueInconsistent failure Content Although the message
document is well formed and
schema valid, some
element/attribute value is
inconsistent either with the
content of other
element/attribute, or with the
processing mode of the MSH, or
with the normative requirements
of the ebMS specification.

EBMS:0004 Other failure Content

EBMS:0005 ConnectionFailure failure Communication The MSH is experiencing
temporary or permanent failure
in trying to open a transport
connection with a remote MSH.

EBMS:0006 EmptyMessagePartition
Channel

warning Communication There is no message available
for pulling from this MPC at this
moment.

EBMS:0007 MimeInconsistency failure Unpackaging The use of MIME is not
consistent with the required
usage in this specification.

EBMS:0008 FeatureNotSupported failure Unpackaging Although the message
document is well formed and
schema valid, the presence or
absence of some element/
attribute is not consistent with
the capability of the MSH, with
respect to supported features.

EBMS:0009 InvalidHeader failure Unpackaging The ebMS header is either not
well formed as an XML
document, or does not conform
to the ebMS packaging rules.

EBMS:0010 ProcessingMode
Mismatch

failure Processing The ebMS header or another
header (e.g. reliability, security)
expected by the MSH is not
compatible with the expected
content, based on the associated
P-Mode.

EBMS:0011 ExternalPayloadError failure Content The MSH is unable to resolve an
external payload reference (i.e. a
Part that is not contained within
the ebMS Message, as identified
by a PartInfo/href URI).

Table 5-4. ebMS Security Processing Errors

Error Code Description Severity Category Semantics

55

Chapter 5. RosettaNet/ebXML Application Configuration

Error Code Description Severity Category Semantics
EBMS:0101 FailedAuthentication failure Processing The signature in the Security

header intended for the "ebms"
SOAP actor, could not be
validated by the Security
module.

EBMS:0102 FailedDecryption failure Processing The encrypted data reference
the Security header intended for
the "ebms" SOAP actor could not
be decrypted by the Security
Module.

EBMS:0103 PolicyNoncompliance failure Processing The processor determined that
the message security methods,
parameters, scope or other
security policy-level
requirements or agreements
were not satisfied.

Table 5-5. ebMS Reliable Messaging Errors

Error Code Description Severity Category Semantics

EBMS:0201 DysfunctionalReliability failure Processing Some reliability function as
implemented by the Reliability
module, is not operational, or
the reliability state associated
with this message sequence is
not valid.

EBMS:0202 DeliveryFailure failure Communication Although the message was sent
under Guaranteed delivery
requirement, the Reliability
module could not get assurance
that the message was properly
delivered, in spite of resending
efforts.

Table 5-6. FMS Messaging Errors

Error Message Description

Unable to locate compatible ProcessingMode
Event under P-Mode

A compatible MEP being either one of PULL,
PULL_AND_PUSH, or PUSH_AND_PULL, for a particular
P-Mode event does not exist. No message could therefor be
pulled.

RosettaNet® Error Messages
Even though a return code of 0 was received, an Exception might have occurred on the remote servers. If
an exception occurred then fms-client.jar returns the following RosettaNet® messages in the Exception
XML object body which is printed to stdout during execution.

If no exception occurred then the XML object returned to stdout should be ReceiptAcknowledgment.

• PKG.MESG.GENERR Error during packaging. General error

• PRF.ACTN.GENERR Error during action performance. General Error

• PRF.DICT.VALERR Error during action performance. Validating the Service Content against a PIP® spec-
ified dictionary

• UNP.MESG.GENERR Error during unpackaging. General error

56

Chapter 5. RosettaNet/ebXML Application Configuration

• UNP.MESG.SIGNERR Error during unpackaging. Verifying the signature of the RosettaNet® Business
Message

• UNP.PRMB.READERR Error during unpackaging. Reading the Preamble

• UNP.PRMB.VALERR Error during unpackaging. Validating the Preamble

• UNP.DHDR.READERR Error during unpackaging. Reading the Delivery Header

• UNP.DHDR.VALERR Error during unpackaging. Validating the Delivery Header

• UNP.SHDR.READERR Error during unpackaging. Reading the Service Header

• UNP.SHDR.VALERR Error during unpackaging. Validating the Service Header

• UNP.SHDR.MNFSTERR Error during unpackaging. Verifying Manifest against the actual attachment body
parts

• UNP.MESG.SEQERR Error during unpackaging. Validating the message sequence

• UNP.MESG.RESPTYPERR Unexpected Response type in the HTTP header

• UNP.MESG.DCRYPTERR Error Decrypting the message

• UNP.SCON.READERR Error during unpackaging. Reading the Service Content

• UNP.SCON.VALERR Error during unpackaging. Validating the Service Content

Configuring Pull Requests
Since ebMS version 3 and FMS version 4.1.2.4 it has been possible to generate and receive Pull Requests.
Pull Requests are messages that are queued on a remote server waiting to be pulled by a remote MSH.
This is especially useful in a situation where a business application is installed on a system that does not
have a permanent internet connection permitting remote pull requests to originate private networks behind
firewalls, from dynamic IP addresses or a dialup internet connections.

In order to deliver messages to a queue for Pulling the following MUST be performed:

• The destination Partner Identifier type MUST be set to PULL_PARTNER.

• The destination Partner Identifier endpoint must be set to the value of the client Message Partition Channel
MPC.

Messages may be transmitted to the PULL_PARTNER Partner Identifier and will be stored in an associated
MPC queue.

Figure 5-1. PartnerIdentifier - Pull Partner

57

Chapter 5. RosettaNet/ebXML Application Configuration

In order to retrieve a message destined for a Partner Identifier MPC the following MUST be performed:

• The MPC value must be known in order to collect messages

• The invocation client must have the Recipient Partner Identifier (-d) as well as the pull request argument
(-p <MPC value>) as arguments.

Note: Messages are delivered in a First In First Out order (FIFO).

Note (2): Messages will be saved to the delivered-content directory of the local server for collection by the
Business Application.

Message Queries
When sending asynchronous messages the FMS client need not wait for an acknowledgement from the re-
mote server. However should an acknowledgement be required or at least message delivery verified then it
is possible to use the FMS client to query the acknowledgement status of any message identifier(s) at a later
stage.

The FMS Client has the capability of storing a list of Message Identifiers that have been sent, acknowledged
or not. By specifying the -J argument during FMS Client invocation the Client will append Message Identi-
fiers in the file .FMS-ClientMessageID.tmp for later querying/tracking purposes, otherwise only the most
recent Message Identifier is stored. This functionality may be disabled by specifying the -I argument which
sets the Client to ignore the Message Identifier storage file.

There exist two methods to query Message Identifier(s) by using the Client:

• If the Message Identifier storage file is used and populated then the FMS Client may be invoked using -Q
which will then transfer the Message Identifier storage file to the server and perform an Acknowledgement
Query on the Message Identifiers.

• However should just a single Message Identifier require an Acknowledgement Query then it is possible to
use the -q <Message ID> argument to query just a single Message Identifier.

Once the Acknowledgement check has been performed the Client will return each Message Identifier to
stdout in the format ’<MessageID> <Acknowledged> <Time Acknowledged>’. For example:
FMS-20081118-145152.160-0.26004090449932216 true 2008-11-18 14:52:00.503

58

Chapter 6. FMS Tools and Utilites

This section describes various utilities included with the FMS distribution. These include a wrapper for the
fmsclient.as4.jar push client, a utility for remotely managing the server.

fmsas4lc Client Wrapper
The fmsas4lc wrapper is installed in /usr/local/bin for Linux and unix systems. It provides a simple
wrapper in the user PATH for invoking the FMS light client Java jar fmsclient.as4.jar installed in a typically
non-visible directory.

Invoke the fmas4lc utility as follows to display usage requirements
fmas4lc -?

Usage: ./fmsas4lc [--jar client_jar] -- [FMS AS4 Light Client Command Line Options] [XML_PAYLOAD]

where the optional client_jar is the fully qualified path name of the FMS AS4 Light Client jar file

and the optional XML_PAYLOAD is the xml payload that will be inserted into the SOAP 1.2 envelope body.

The following environment variables may be set according to requirements before invoking fmas4lc

1. FMS_JAVA_ARGS. Override arguments to the Java virtual machine. Defaults to -Xmx2048m.

AS4CLIENTJAR_DIR. Override the directory to the fmsclient.as4.jar jar file. Defaults to
/usr/share/java/fms for Linux systems.

AS4CLIENTJAR. Override the name of the client jar. Defaults to fmsclient.as4.jar.

fmsconf Server Configuration Utility
Command Line Utility to administer and report on the FMS server. This utility permits an adminstrator to
remotely (or locally) send commands to FMS servers and can be used for scripting server administration
tasks without user intervention and/or to create customised server management utilities with similiar func-
tionality to the FMC.

fmsconf utility uses default user login credentials of admin and password admin to connect to the FMS server.
Ensure that the necessary credentials are configured prior to connecting to the server as described in section
the Section called Admin User Creation in Chapter 3.

The following commands may be supplied using fmsconf ’-x admin_command’ option

•

__FMS_Admin_Version. Return the server version.

•

__FMS_Admin_ReloadConfigurations. Instruct the server to reload the configuration. This command is
used when a new configuration must be reloaded without restarting the FMS server. All active messaging
sessions are completed before any reload.

•

__FMS_Admin_GetConfiguration. Retrieve the configuration from the server. This command is used to
retrieve an FMS server configuration.

•

__FMS_Admin_ReloadConnections. Instruct the server to reload any changes to the connection config-
uration. This command is used when a new configuration file with updated connection settings must
be activated without restarting the FMS server. All active messaging sessions are completed before any
reload.

•

__FMS_Admin_CheckLicense. Instruct the server to display the license details. Useful to determine the
period for which the license is active.

59

Chapter 6. FMS Tools and Utilites

•

__FMS_Admin_ReloadLicense. Instruct the server to reload the license activation file without restarting
the server.

•

__FMS_Admin_ConnectionStatistics. Instruct the server to display connection statistics of a running
server.

•

__FMS_Admin_ListCerts truststore truststoreType truststorePassword. Instruct the server to list
the certs in any of the various truststores of a running server. The truststoreType must be one of JKS,
PCKS_12 or DATABASE.

•

__FMS_Admin_ServerLogLevel level. Change the server logging level. The level must be one of WARN,
INFO, DEBUG or TRACE.

•

__FMS_Admin_GetServerLogLevel level. Retrieve the server logging level.

•

__FMS_Admin_AddCert truststore truststoreType truststorePassword alias
certificateBase64. Instruct the server to add a new certificate specified by the certificateBase64
string and identified by the alias.

The updateCert.sh script listed in the Section called Script to dynamically update FMS public certificates
provides a wrapper for fmsconf to dynamically update certificates on a running FMS server.

•

__FMS_Admin_GetCert truststore truststoreType truststorePassword alias [full]. Instruct the
server to return the certificate in base64 encoded format identified by the alias.

The full certificate detail including fingerprint will be displayed if the optional full argument is included.

•

__FMS_Admin_DeleteCert truststore truststoreType truststorePassword alias [result]. Instruct
the server to delete the cert identified by the alias from the keystore identified by truststore.

The deleted certificate alias and fingerprint will be displayed after deletion if the optional result argu-
ment is included.

•

__FMS_Admin_RenameKey truststore truststoreType truststorePassword keyPassword
currentKeyAlias newKeyAlias alias [result]. Instruct the server to rename a certificate or key alias
in the keystore identified by truststore.

fmsconf Requirements
The fmsconf utility uses the following freely available programs which are typically available on any Linux
system.

• python

• openssl

• getopt

fmsconf Administrator Configuration
An Administrator listener connection must be configured and enabled in the FMS configuration file. The
Administrator configuration is automatically generated and may be adjusted to look similar to the following
sample.

60

Chapter 6. FMS Tools and Utilites

<cc:listener>

<cc:name>Administration</cc:name>

<cc:className>com.flame.connection.impl.admin.Admin</cc:className>

<cc:aliasRef cc:keystoreID="administrator">

<cc:alias>fmsrns</cc:alias>

<cc:password>fmsrns</cc:password>

</cc:aliasRef>

<prop:Properties>

<prop:comment>Configuration options for com.flame.connection.impl.admin.Admin</prop:comment>

<prop:entry prop:key="HOST">yourdomain.com</prop:entry>

<prop:entry prop:key="MAXIMUM_CONCURRENT_CONNECTIONS">1</prop:entry>

<prop:entry prop:key="READ_TIMEOUT">0</prop:entry>

<prop:entry prop:key="USE_SSL">true</prop:entry>

<prop:entry prop:key="MOTD"><html>Welcome to the FMS Management Console

 \

Server listening: %2$s
Connection: %1$s@%3$s

 \

Server Started: %4$tc
Uptime: %5$ts seconds</html></prop:entry>

<prop:entry prop:key="SSL_NEED_CLIENT_AUTH">false</prop:entry>

<prop:entry prop:key="PORT">29360</prop:entry>

<prop:entry prop:key="LOG4J_PATTERN">%-5p [%t]: %m%n</prop:entry>

</prop:Properties>

</cc:listener>

<cc:acl cc:order="allow_deny"/>

The keystore configuration is automatically generated at system initialisation and may be adjusted to con-
form to deployment requirements as follows
<cc:keystoreRef cc:ID="administrator">

<cc:name>admin.jks</cc:name>

<cc:type>JKS</cc:type>

<cc:pass>mypassword</cc:pass>

</cc:keystoreRef>

fmsconf Administrator User
An Administrator user must also be configured on the server. This should be done as per the instructions in
the Section called Admin User Creation in Chapter 3.

fmsconf Administrator Certificates
If the Admin listener configuration USE_SSL and SSL_NEED_CLIENT_AUTH properties are set to ’true’ then
before using fmsconf to connect to the FMS server the necessary key and certificates must be created. The
public certificate must be imported into the FMS Administrator listener truststore (admin.jks) as defined
above.

This may be done by creating the private key in file mcpriv.pem, and public certificate in file mcpub.pem as
per the following instructions.

openssl genrsa -out mcpriv.pem 1024

openssl req -new -x509 -key mcpriv.pem -out mcpub.pem -days 1095

where mcpriv.pem is the private key and mcpub.pem is the public certificate to use when connecting to FMS.

Import mcpub.pem into the FMS truststore as follows
keytool -import -keystore server/admin.jks -storepass changeit -file mcpub.pem -alias admin

Note: Ensure that the FMS truststore contains a private key else admin ssl connection will cause the following
problem
140735140426592:error:14094410:SSL routines:ssl3_read_bytes:sslv3 \

alert handshake failure:s3_pkt.c:1472:SSL alert number 40

140735140426592:error:1409E0E5:SSL routines:ssl3_write_bytes: \

ssl handshake failure:s3_pkt.c:656:

61

Chapter 6. FMS Tools and Utilites

which may be done as follows.
keytool -genkeypair -keyalg RSA -validity 365 -keystore /home/fms/admin.jks -storepass 123456 -keypass fmsrns -alias myalias -keysize 2048 -storetype JKS

Refer to the Section called Keystore Setup and Examples in Chapter 2 for further details on key and certificate
generation for FMS.

fmsconf Usage
Invoke the fmsconf utility as follows to see the usage

fmsconf -?

fmsconf: invalid option -- ’?’

Usage: fmsconf [-d] [-c public_certificate_file] [-h fms_host] [-k private_key_file] [-P fms_host_admin_port] [-p password] [-u admin_username] [-x admin_command] [-H]

where

-d optional - switch debug to s_client on

-c /path/to/public_certificate_file - only required if the client authentication property ’SSL_NEED_CLIENT_AUTH’ is set to ’true’ for the admin listener in the server configuration

-h host - optional - defaults to xenialmac

-H : optional - displays help information

-k /path/to/public_key_file - only required if the client authentication property ’SSL_NEED_CLIENT_AUTH’ is set to ’true’ for the admin listener in the server configuration

-P port - optional - defaults to 29360

-p password - optional - defaults to admin

-u admin_username - optional - defaults to admin

-x admin_command - optional - defaults to ’__FMS_Admin_Version’. Can be any one of

’__FMS_Admin_Version’

’__FMS_Admin_ReloadConfigurations’

’__FMS_Admin_GetConfiguration’

’__FMS_Admin_ReloadConnections’

’__FMS_Admin_ReloadLicence’

’__FMS_Admin_CheckLicence’

’__FMS_Admin_ConnectionStatistics’

’__FMS_Admin_ServerLogLevel WARN|INFO|DEBUG|TRACE’

’__FMS_Admin_GetServerLogLevel’

’__FMS_Admin_ListCerts certs.flame JKS|PKCS12|DATABASE keystorepassword’

’__FMS_Admin_GetCert certs.flame JKS|PKCS12|DATABASE keystorepassword mykeyalias [full (FMS 5.4.2+ only)]’

’__FMS_Admin_DeleteCert certs.flame JKS|PKCS12|DATABASE keystorepassword mykeyalias [result (FMS 5.4.2+ only)]’

’__FMS_Admin_AddCert certs.flame JKS|PKCS12|DATABASE keystorepassword mykeyalias certificateBase64’

’__FMS_Admin_RenameKey certs.flame JKS|PKCS12|DATABASE keystorepassword keypassword currentkeyalias newkeyalias’

Use this utility to dynamically update a running FMS configuration or report on the status of a running FMS instance.

fmsconf Environment Variables
The fmsconf utility behaviour may be customised by adjusting the following environment variables

• ERROR_FILE defaults to fmsconf.<pid>.

• OPENSSL=${OPENSSL:=openssl}

• TLS_ARG Defaults to to an empty string. Results in the openssl s_client process negotiating the highest
mutually supported protocol version. May be set up to ’-tls1_3’ if required to only use TLSv1.3 and if
supported in the java.security file.

• ADMINUSER Defaults to admin and must match the setting in the FMS the administration users user.cfg
file as per the instructions in the Section called Admin User Creation in Chapter 3.

• KEY Defaults to mcpriv.pem and only required if SSL_NEED_CLIENT_AUTH is set on the server admin-
istration listener properties.

• CER Defaults to mcpub.pem and only required if SSL_NEED_CLIENT_AUTH is set on the server admin-
istration listener properties.

• ADMINPASS Defaults to admin and must match the setting in the FMS the administration users user.cfg
file as per the instructions in the Section called Admin User Creation in Chapter 3.

62

Chapter 6. FMS Tools and Utilites

Script to dynamically update FMS public certificates
The updateCert.sh bash script may be used to replace an existing client certificate with a new certificate in
the FMS keystore. Prior to running this ensure that the fmsconf utility is installed and working before using
this script.

The script makes a backup copy of the existing client certificate being replaced, then deletes it and then loads
the new client certificate.

The following environment variables may be set prior to running the script.

• FMS_HOME - defaults to the fms user directory, typically /home/fms.

• BACKUP_DIR - defaults to /home/fms/tmp.

•

TRUSTSTORE_PW - defaults to changeit.

• TRUSTSTORE_TYPE - defaults to JKS. May be set to PKCS12.

#/usr/bin/env bash

##

RCSfile: updateCert.sh,v Revision: 1.1.2.8 Date: 2019-08-01 10:08:45

##

(c) Flame Computing Enterprises cc - All rights reserved

#

Update FMS public certificate at specified time

#

Usage: updateCert.sh truststore cert_file cert_alias [fms_host]

where

truststore: name of the Java Keystore known to FMS in which the certificate must be updated

cert_file: file containing the certificate in x format

cert_alias: alias to be associated with the certificate

fms_host: host on which the FMS administration interface is listening

#

Eg.

updateCert.sh certs.flame /path/to/cert.crt myalias 127.0.0.1

#

To update a certificate on a specific date use the ’at’ command to schedule this command as follows

#

echo "/home/fms/trigger/updateCert.sh flame.jks /home/fms/remotePartner.crt remotePartner" | at ’11:15 Oct 17’

#

where

flame.jks is the FMS truststore in which the certificate must be updated

/home/fms/remotePartner.crt is the file containing the public certificate

remotePartner is the alias of the certificate to be updated in the truststore

#

Requirements

fmsconf

fms

#

set -x

Default ENV variables

TRUSTSTORE_TYPE=${TRUSTSTORE_TYPE:="JKS"}

TRUSTSTORE_PW=${TRUSTSTORE_PW:="changeit"}

FMS_HOME=${FMS_HOME:="$(grep ’^fms:’ /etc/passwd |cut -d: -f 6)"}

if ["${FMS_HOME}" == ""]

then

FMS_HOME="/home/fms" # hardwire it.

fi

63

Chapter 6. FMS Tools and Utilites

BACKUP_DIR=${BACKUP_DIR:="${FMS_HOME}/tmp"}

Usage () {

echo <<EOF "Usage: $0 truststore cert_file cert_alias [fms_host]

where

truststore: name of the Java Keystore known to FMS in which the certificate must be updated

cert_file: file containing the certificate in x format

cert_alias: alias to be associated with the certificate

fms_host: host on which the FMS administration interface is listening. Default is ’127.0.0.1’

Use this utility from the ’at’ command to dynamically update a running FMS certificate on a specified date and time.

The following environment variables may be set before invoking ’${0}’

FMS_HOME with default ’${FMS_HOME}’.

TRUSTSTORE_TYPE with default ’${TRUSTSTORE_TYPE}’.

TRUSTSTORE_PW with default ’${TRUSTSTORE_PW}’.

BACKUP_DIR with default ’${BACKUP_DIR}’ for saving certificates being refreshed.

"

EOF

exit 1

}

if [$# -lt 3 -o $# -gt 4]

then

Usage

fi

TRUSTSTORE=$1

CERT_FILE=$2

if ! test -f ${CERT_FILE}; then

echo "Could not locate certificate file ’${CERT_FILE}’."

Usage

else # Determine certificate

if grep -q "BEGIN CERTIFICATE" ${CERT_FILE}

then # Looks like a cert

CERTIFICATE=$(cat ${CERT_FILE} | grep -v ’CERTIFICATE’)

else

echo "Could not locate a certificate in ${CERT_FILE}."

Usage

fi

fi

CERT_ALIAS=$3

FMS_HOST=${FMS_HOST:=’127.0.0.1’}

if [$# -eq 4]

then

FMS_HOST=$4

fi

if ! test -d ${BACKUP_DIR}

then

echo "Could not locate the backup directory ${BACKUP_DIR}."

Usage

fi

echo "Saving certificate with alias ’${CERT_ALIAS}’ to ${BACKUP_DIR}/${CERT_ALIAS}.$$.crt"

First save the current cert

fmsconf -h ${FMS_HOST} -x "__FMS_Admin_GetCert ${TRUSTSTORE} ${TRUSTSTORE_TYPE} ${TRUSTSTORE_PW} ${CERT_ALIAS}" |grep -v ’^OK$’ |grep -v ’_BLOCK’ > ${BACKUP_DIR}/${CERT_ALIAS}.$$.crt

retval=$?

if [$retval -ne 0]

then

64

Chapter 6. FMS Tools and Utilites

echo "fmsconf returned error ’$retval’. Could not retrieve certificate for ’${CERT_ALIAS}’ from ’${TRUSTSTORE}’ at ’${FMS_HOST}’."

Usage

fi

Delete the current cert

echo "Replacing certificate with alias ’${CERT_ALIAS}’ in ’${FMS_HOME}/${TRUSTSTORE}’ and details as follows ..."

echo

keytool -v -list -keystore ${FMS_HOME}/${TRUSTSTORE} -storepass changeit -alias ${CERT_ALIAS} 2>/dev/null |head -12 |tail -8

echo

fmsconf -h ${FMS_HOST} -x "__FMS_Admin_DeleteCert ${TRUSTSTORE} ${TRUSTSTORE_TYPE} ${TRUSTSTORE_PW} ${CERT_ALIAS}"

retval=$?

if [$retval -ne 0]

then

echo "fmsconf returned error ’$retval’. Could not delete certificate for ’${CERT_ALIAS}’ from ’${TRUSTSTORE}’ at ’${FMS_HOST}’."

Usage

fi

Add the new cert

echo "with new certificate and details as follows ..."

echo

keytool -printcert -file ${CERT_FILE} |head -8

echo

fmsconf -h ${FMS_HOST} -x "__FMS_Admin_AddCert ${TRUSTSTORE} ${TRUSTSTORE_TYPE} ${TRUSTSTORE_PW} ${CERT_ALIAS} ${CERTIFICATE}"

retval=$?

if [$retval -ne 0]

then

echo "fmsconf returned error ’$retval’. Could not add certificate for ’${CERT_ALIAS}’ to ’${TRUSTSTORE}’ at ’${FMS_HOST}’."

Usage

fi

Certificate updates may be scheduled using the at command and the above updateCert.sh script as per the
following example on *nix systems
echo "/home/fms/trigger/updateCert.sh ’2019-06-11 09:55:00’ /home/fms/flame.jks /path/to/NewCert.pem CERTALIAS localhost" | at ’10:00 Jun 11’

65

Appendix A. Server Command Line Options
[root@localhost fms]# java -server -jar fms.jar -?

(c) Flame Message Server usage:

-s >main settings file< -l >licence file< -? --help

Where:

-d provides the location of the installation directory. Default: .

-i informs FMS to do initialisation. Previous configurations will be backed up. \

Initialisation of configuration files will occur if these do not exist

-ic informs FMS to do initialisation only and not listen.

-l provides the location to the FMS licence file. Default: fms.lcn

-s provides the location to the main settings file. Default: main.conf

-u provides the location to the administration users file. Default: user.cfg

-v retrieve the build version.

-w do not overwrite the existing server configuration in the event of configuration updates to a running server.

-? or --help displays this message.

66

Appendix B. ebMS Reliable Messaging

To be implemented.

67

Appendix C. FMS Log4j based Logging Configuration

The FMS logging sub system generates log messages at various levels which can be routed to various log files
and various external logging systems. The logs provide a trace of messaging transactions, debug statements
and errors.

Log4j logging configuration files are located in the log subdirectory of the FMS installation directory.

• RPM based distributions - loggging messages are typically sent to /var/log/messages assuming rsyslog
has been configured correctly. Typical log4j.properties configuration files are illustrated below.

• DEB (debian and ubuntu) based distributions - loggging messages are typically sent to /var/log/syslog
assuming rsyslog has been configured correctly. Typical log4j.properties configuration files are illus-
trated below.

• ZIP distributions - Log messages will typically be sent to log files located in the directory that FMS was
invoked from.

The following Log4j configuration illustrates using the operating system logging infrastructure.
! Set root category threshhold to INFO and log to Syslog

log4j.rootCategory=INFO, Syslog

! Syslog is set to be a SyslogAppender.

log4j.appender.Syslog=org.apache.log4j.net.SyslogAppender

! Syslog uses PatternLayout.

log4j.appender.Syslog.layout=org.apache.log4j.PatternLayout

! The logging pattern to use, see below.

log4j.appender.Syslog.layout.ConversionPattern=%-5p %m%n

! Set Syslog properties.

log4j.appender.Syslog.SyslogHost=localhost

log4j.appender.Syslog.Facility=INFO

log4j.appender.Syslog.FacilityPrinting=true

! If Syslog4j is installed:

! Syslog4j provides client (UDP, TCP, TCP over SSL/TLS, Native Unix syslog, and Unix socket) and server (TCP, TCP over SSL/TLS, and UDP) implementations of the BSD Syslog protocol

! Also see http://www.productivity.org/projects/syslog4j/old/

! Syslog is set to be a Syslog4jAppender.

! log4j.appender.Syslog=org.productivity.java.syslog4j.impl.log4j.Syslog4jAppender

! log4j.appender.Syslog.Protocol=unix_syslog

! log4j.appender.Syslog.Threshold=INFO

! log4j.appender.Syslog.layout=org.apache.log4j.PatternLayout

! log4j.appender.Syslog.layout.ConversionPattern=%-5p %m%n

The following Log4j configuration illustrates using a file based logging infrastructure.
!Set root category threshhold to INFO and log to dest2

log4j.rootCategory=INFO, dest2

! Load a Rolling File Appender as our destination

log4j.appender.dest2=org.apache.log4j.RollingFileAppender

! This appender will only log messages with priority equal to or higher than

! the one specified here

log4j.appender.dest2.Threshold=INFO

! Specify the logging file name

log4j.appender.dest2.File=/var/log/fms/fms.log

! Don't overwrite, append

log4j.appender.dest2.Append=true

log4j.appender.dest2.layout=org.apache.log4j.PatternLayout

! The logging pattern to use, see below.

log4j.appender.dest2.layout.ConversionPattern=%d{dd MMM yyyy HH:mm:ss,SSS} %-5p %m%n

! Control the maximum log file size

log4j.appender.dest2.MaxFileSize=512KB

! Keep backup file(s) (backups will be in filename.1, .2 etc.)

log4j.appender.dest2.MaxBackupIndex=10

The log file formate may be customised as follows
<date> <granularity> [<thread>,<classname>:<lineNumber>]

<message> [<internalTrackingID>, <messageTrackingID>]

68

Appendix C. FMS Log4j based Logging Configuration

The logging format can be modified by editing the required log4j.properties file.

Table C-1. Table of log4j arguments with their descriptions

Argument Description

%n A new line follows.

%m Log message. <message> <InternalTrackingID> (if
applicable) <messageTrackingID> (if applicable)

%p Priority. The Logging Level of this message.

%r millisecs since program started running.

%c name of your category (logger),%c{2} will output the
last two components.

%t Name of current thread.

%d Date and time, also %d{ISO8601}, %d{DATE},
%d{ABSOLUTE}, %d{HH:mm:ss,SSS}, %d{dd MMM
yyyy HH:mm:ss,SSS}

%l Long. Equivalent to %F%L%C%M

%F Java source file name.

%L Java source line number.

%C Java class name, %C{1} will output the last one
component.

%M Java method name.

Table C-2. Log Message Components.

Component Description

<message> The Log Message

<InternalTrackingID> Used by the FMS server to keep record of where
messages were sent from so that returned messages
will have correct destination. This is required as the
server does not only deal with one message at a time.

<messageTrackingID> Only applicable in situations where an actual
message that was sent to or received by the server(eg:
an Invoice) was associated with a particular log
message.

Levels of Granularity

Table C-3. Log Granularity

Logging Level Semantic Level

TRACE Log TRACE messages and include all messages as
below.

DEBUG Log DEBUG messages and includes all messages as
below.

INFO Log INFO messages and include all messages as
below.

69

Appendix C. FMS Log4j based Logging Configuration

Logging Level Semantic Level
WARN Log WARN messages and include all messages as

below.

ERROR Log ERROR messages and include all messages as
below.

FATAL Quiet. Only logs fatal errors.

70

Appendix D. Extending Schema Content Support

What is a PIP®?
RosettaNet® Partner Interface Processes (PIP®s) are specialized system-to-system XML-based dialogs that
define business processes between trading partners. Each PIP® specification includes a business document
with the vocabulary, and a business process with the choreography of the message dialog.

Currently only XML Schema is supported as a vocabulary for the XML based dialogs.

Which Schemas are supported by default?

• Petroleum Industry Data Exchange PIDX, visit http://www.pidx.org/ for more information.

• Universal Business Language UBL The UBL defines a set of standardised XML based vocabularies for
business documents in the order-to-invoice cycle. The current 2.0 version of UBL is maintained by the OA-
SIS Universal Business Language Technical Committee. See http://www.oasis-open.org/committees/ubl
for further information.

• OAGIS BOD The OAGIS® BOD XML version 9_5 schema documents. Copyright (c) Open Applications
Group. All Rights Reserved. See http://www.oagi.org for further information.

Adding a new Schema
Adding a new Schema definition to the configuration is possible through the FMC. Assuming the FMC is
open and visible click in the Schema Mapping list on the left hand side of the interface. By doing so the
following screen should be in view.

Figure D-1. Schema Mapping UBL

By accessing (right click) the context menu from the list of Schema Entries it is possible to perform a number
of tasks

71

Appendix D. Extending Schema Content Support

To edit a schema entry just click on the Edit menu item in the context menu to open a popup window.

Table D-1. Schema Entry Explanation

Key Description

Name This is the name of the Schema, this would be the
same name from the client invocation argument
Schema Type

Schema The value is the path to the XML Schema provided
for this Schema Type (<The XML Schema>).

Action The Global Business Action Code as defined by the
Schema

To Role The Global Partner Role Classification Code as
defined by the Schema

To Service The Global Business Service Code as defined by the
Schema

From Role The Global Partner Role Classification Code as
defined by the Schema

From Service The Global Business Service Code as defined by the
Schema

Version The version of this Schema

Code The Schema Code, normally provided by
RosettaNet®

72

Appendix E. Collaboration Protocol Profile/Agreement

CPP/A Definition
Collaboration Protocol Profile/Agreement (CPP/A) provides interoperability between two parties even
though they may use application software and run-time support software from different vendors. The
Collaboration Protocol Profile (CPP) defines message-exchange capabilities and the business collaborations
that it supports. The Collaboration Protocol Agreement (CPA) defines the way two parties will interact in
performing the chosen business collaboration.

CPP/A Configuration
ebXML is currently the only messaging implementation that supports the CPP/A standard. The CPP/A
may either be retrieved from a URL or from an ebMS Registry Server such as Omar® or a supported SOAP
Repository.

A static CPA may be defined in the PartnerIdentifier section of the FMC with an override switch to ignore a
client provided CPA when in a Production environment.

Refer to the Section called Invocation in Chapter 5 for the client CPA arguments -o and -C.

73

Appendix F. Examples and Test cases

ebXML Example
The following example illustrates using FMS between two business trading partners using the ebXML V3.0
message protocol. The example takes a step by step approach in configuring, establishing a link, and commu-
nicating a business message between the producer and a consumer trading partner. The business document
(invoice) is based on the Universal Business Language UBL version 2.0 format.

The example assumes that the producer machine has a TCP/IP number of 192.168.0.102 and that the
consumer machine has a TCP/IP number of 192.168.0.128.

ebXML Configuration
The first step is to install FMS as discussed in the Section called FMS Installation in Chapter 2. Once FMS is
installed and running invoke the FMC as discussed in Chapter 3. Leave any settings not included below at
default or blank.

Producer Configuration
The following interface configuration steps are required on the producer side.

1. Set up the keystore including private and public keys for the producer as per the Section called Keystore
Setup and Examples in Chapter 2.

2. Open the Interface Configuration tab in the FMC and select HTTP - ebXML - UBL in the
Interface Name pane.

3. Select Enabled in the corresponding configuration form to the right.

4. Select the required Payload Security Level eg. SIGN_ENCRYPT.

5. Select the required Transport Security Level eg. SIGN_ENCRYPT.

6. Select the name of the output directory eg. delivered-content.

7. Select the Usage required eg. TEST.

8. Only enable Non-Repudiation if the database has been installed and configured as detailed in the
Section called Database Server in Chapter 2.

9. Select the ebXML RemoteIn button in the HTTP -ebXML - UBL Connections form and set the HOST at-
tribute to the TCP/IP number of the machine on which the producer FMS is hosted eg. 192.168.0.102.
Both TCP/IP V4 and TCP/IP V6 are supported. If DNS is enabled then set HOST to the domain name.

The following partner configuration steps are required on the producer side for the local partner identifier.

1. Select partner identifier 000000000 in the Partner Identifiers pane in the Interface
Configuration section of the FMC.

2. Set the Identifier Value to Producer in the corresponding form. The partner identifier in the
Partner Identifiers pane will change accordingly.

3. Set the Partner Type to LOCAL PARTNER from the drop down list.

The following partner configuration steps are required on the producer side for the remote partner identifier.

1. Select partner identifier 999999999 in the Partner Identifiers pane in the Interface
Configuration section of the FMC.

2. Set the Identifier Value to Consumer in the corresponding form. The partner identifier in the
Partner Identifiers pane will change accordingly.

3. Set the Keystore Alias to consumer_fmsrns.

4. Set the Endpoint URL/MPC to the url of the remote host eg.https://192.168.0.128/ebXML.

5. Set the Partner Type to REMOTE PARTNER from the drop down list.

The following processing mode configuration steps are required on the producer side.

74

Appendix F. Examples and Test cases

1. Select the Processing Modes pane in the Interface Configuration section of the FMC.

2. Select the General form and set the Identifier attribute to inv-producer-consumer. This can be set
to any text string but must correspond with the consumer processing mode.

3. Set the Agreement to blank unless a CPA is required.

4. Set the Conversation ID to 1.

5. Set the Initiating Partner Party to Producer.

6. Set the Responding Partner Party to Consumer.

Select the Request tab in the P-Mode Events form and ensure that the following settings are configured.
Note that these are also known as P-Mode Legs.

1. Set the protocol Address/Endpoint to https://192.168.0.128/ebXML.

2. Set the business information Service to Service-Mapping-UBL from the drop down list.

3. Set the business information Action to Invoice.

4. Right click in the business information Payload Profiles field and select New to open the Payload
Profile selection window.

5. Select UBL-Invoice-2.0.xsd from the Schema File drop down list.

6. Select application/xml from the MIME Type drop down list.

7. Select EXPECTED from the Requirement drop down list.

8. Select the Done button to close the Payload Profile selection window.

9. Select the Error Handling form by scrolling down to the bottom of the P-Mode-Events request tab
form.

10. Set the Sender Errors To to https://192.168.0.102/ebXML.

11. Set the Receiver Errors To to https://192.168.0.128/ebXML.

12. Set all 4 Notify selections.

Once all the above has been configured select the Save button. Then select the Administration pane and
load the configuartion into FMS as follows.

1. Select the Administration menu option and select Open Admin Connection.

2. Select the Administration menu option and select Connect to Logger.

3. Select the Tools menu option and select Reload Connections.

Consumer Configuration
The following interface configuration steps are required on the consumer side.

1. Set up the keystore including private and public keys for the consumer as per the Section called Keystore
Setup and Examples in Chapter 2.

2. Open the Interface Configuration tab in the FMC and select HTTP - ebXML - UBL in the
Interface Name pane.

3. Select Enabled in the corresponding configuration form to the right.

4. Select the required Payload Security Level eg. SIGN_ENCRYPT.

5. Select the required Transport Security Level eg. SIGN_ENCRYPT.

6. Select the name of the output directory eg. delivered-content.

7. Select the Usage required eg. TEST.

8. Only enable Non-Repudiation if the database has been installed and configured as detailed in the
Section called Database Server in Chapter 2.

9. Select the ebXML RemoteIn button in the HTTP -ebXML - UBL Connections form and set the HOST at-
tribute to the TCP/IP number of the machine on which the consumer FMS is hosted eg. 192.168.0.128.
Both TCP/IP V4 and TCP/IP V6 are supported. If DNS is enabled then set HOST to the domain name.

75

Appendix F. Examples and Test cases

The following partner configuration steps are required on the consumer side for the local partner identifier.

1. Select partner identifier 000000000 in the Partner Identifiers pane in the Interface
Configuration section of the FMC.

2. Set the Identifier Value to Producer in the corresponding form. The partner identifier in the
Partner Identifiers pane will change accordingly.

3. Set the Keystore Alias to producer_fmsrns.

4. Set the Partner Type to REMOTE PARTNER from the drop down list.

The following partner configuration steps are required on the consumer side for the remote partner identifier.

1. Select partner identifier 999999999 in the Partner Identifiers pane in the Interface
Configuration section of the FMC.

2. Set the Identifier Value to Consumer in the corresponding form. The partner identifier in the
Partner Identifiers pane will change accordingly.

3. Set the Partner Type to LOCAL PARTNER from the drop down list.

The following processing mode configuration steps are required on the consumer side.

1. Select the Processing Modes pane in the Interface Configuration section of the FMC.

2. Select the General form and set the Identifier attribute to inv-producer-consumer. This can be set
to any text string but must correspond with the producer processing mode.

3. Set the Agreement to blank unless a CPA is required.

4. Set the Conversation ID to 1.

5. Set the Initiating Partner Party to Producer.

6. Set the Responding Partner Party to Consumer.

Select the Request tab in the P-Mode Events form and ensure that the following settings are configured.
Note that these are also known as P-Mode Legs.

1. Set the protocol Address/Endpoint to https://192.168.0.102/ebXML.

2. Set the business information Service to Service-Mapping-UBL from the drop down list.

3. Set the business information Action to Invoice.

4. Right click in the business information Payload Profiles field and select New to open the Payload
Profile selection window.

5. Select UBL-Invoice-2.0.xsd from the Schema File drop down list.

6. Select application/xml from the MIME Type drop down list.

7. Select EXPECTED from the Requirement drop down list.

8. Select the Done button to close the Payload Profile selection window.

9. Select the Error Handling form by scrolling down to the bottem of the P-Mode-Events request tab
form.

10. Set the Sender Errors To to https://192.168.0.102/ebXML.

11. Set the Receiver Errors To to https://192.168.0.128/ebXML.

12. Set all 4 Notify selections.

Once all the above has been configured select the Save button. Then select the Administration pane and
load the configuartion into FMS as follows.

1. Select the Administration menu option and select Open Admin Connection.

2. Select the Administration menu option and select Connect to Logger.

3. Select the Tools menu option and select Reload Connections.

76

Appendix F. Examples and Test cases

Sending an Invoice
Once the above configuration settings have been made using the FMC and subsequently loaded into FMS,
business documents corresponding to the configuration settings can be communicated from the producer
trading partner to the consumer trading partner. This may be achieved using the fms-client utility from
the FMS installation directory as follows.
java -jar client/fms-client.jar -c inv-producer-consumer -d consumer -e request \

-f test/UBL/xml/UBL-Invoice-2.0-Example.xml -P 29450 -O finest

where the client utility command line options are described in the Section called Invocation in Chapter 5.

RosettaNet Example
Fictional Example for Configuration and Communication between two business partners using FMS and
RosettaNet®.

Bob runs a manufacturing company, while Mary runs a retail store which distributes and sells Bob’s prod-
ucts.

Since Bob’s manufacturing company runs a Business 2 Business (B2B) integration server which supports
RosettaNet, Mary has realized that the quoting and product ordering process could be streamlined by using
the B2B integration specification RosettaNet provided by FMS-Starter Edition.

Mary initiates the B2B process by communicating with Bob and discussing the integration. Bob sends Mary:

• his supported Parter Interface Process (PIP) list

• the RosettaNet business dictionary for a glossary of terms

• his DUNS number (000000001)

• his physical location

• his B2B integration server hostname (https://ebusiness.bob.org/RosettaNet)

• as well as his Public Key (Certificate).

Mary subscribes to the RosettaNet PIP cluster 3 which is ’Order Management’ which controls processes
such as:
Cluster 3: Order Management

Segment 3A: Quote and Order Entry

PIP3A1: Request Quote

PIP3A2: Request Price and Availability

PIP3A3: Request Shopping Cart Transfer

PIP3A4: Request Purchase Order

PIP3A5: Query Order Status

...

Mary is only really interested in PIP3A1 and PIP3A4 but all of the other options are available in this PIP
cluster.

Mary then applies for a Data Universal Numbering System or DUNS number from
http://www.dnb.com/US/duns_update/ for use with the RosettaNet specification which uniquely
identifies her company by a number. Mary receives the DUNS number 000000002 for her company.

Mary now installs the FMS distribution on her company’s server. She refers to the manual for installation
steps:

1. Install FMS

2. Obtain a licence key from the FMS distributer

3. Generate a Private and Public Key pair in the keystore ’certs’

77

Appendix F. Examples and Test cases

4. Import Bob’s Public Key (Certificate) into the server keystore ’certs’ under the alias ’bob.alias’

5. Add Bob's PartnerIdentifier (000000001), alias (bob.alias), and endpoint hostname
(https://rn.bob.org) to the PartnerIdentifier section in the configuration file
ConnectionConfiguration.xml for return mapping purposes

6. Copy the unrestricted Java policy files into the $JAVA_HOME/lib/security/ directory to allow for 1024
bit encryption keys

7. Configure the logging system

8. Start the server and check logs for error messages

9. Export the server's Public Key (Certificate) for use with the client application during SSL transmission

10. Copy the server's Public Key to the client machine running the Management Application that will be
sending the RosettaNet requests

11. Install the Client distribution on the client machine

12. Import the server's Public Key (Certificate) into the client machine's keystore

13. Configure the client script with the correct DUNS numbers (Recipient ’000000001’ and Sender
’000000002’), Bob's server hostname ’https://rn.bob.org’, the local server hostname to connect
to, and the physical location names for both Mary and Bob

14. Send Mary's Public Key (Certificate), her physical location, and her DUNS number to Bob who then
inputs them into his system

15. Modify the Business Application to generate a Quote into the XML standard provided by the PIP3A1
specification

16. Execute the client script from the Business Application with the XML, Message Tracking ID, supporting
documents, and Schema Type (’Request Quote’) as arguments and wait for a response from Bob's B2B
integration server

Mary then repeats the last two steps but with PIP3A4 for ’Request Purchase Order’ for ordering of stock.

Mary now enjoys a seamless quoting and ordering experience with Bob's Manufacturing Company, thereby
increasing productivity and reducing stress levels at work.

78

Appendix G. Frequently Asked Questions

Server

1. Starting the server fails with a configuration parse error where a configuration element in
ConnectionConfiguration.xml is valid but with an error similar to the following

main: Configuration Parse failure: L529:C31 cvc-complex-type.2.4.d: Invalid content was found starting with element ’pmode:useCompression’. No child element is expected at this point.

Ensure that all elements are ordered according to the schema files in the FMS install schema/FMS
directory.

2. Sending a message with required encryption using the ’-enc alias’ command line argument fails with
following error message
SEVERE com.sun.xml.wss.impl.misc.DefaultSecurityEnvironmentImpl getCertificate() - WSS0221: Unable to locate matching certificate for Key Encryption using CallbackHandler.SEVERE com.sun.xml.wss.impl.filter.EncryptionFilter process() - WSS1413: Error extracting certificate

This is an indication that the alias matching the required partner public certificate in the keystore to
encrypt an outbound message cannot be located in the keystore. Ensure that the certificate is installed.

3.

4. Is it possible to restrict TLS ciphers ?

FMS does not have a configuration option for enabling and disabling TLS ciphers as that is handled
by the default java.security configuration file which will override any setting configured in applica-
tions.

5. I upgraded my Java version to 1.8.0 release 222 or later and now the FMS server starts but just hangs.

This is due to a missing class file within the standard java library. A typical error output in the FMS
server logs could look as follows:
Exception in thread "main" java.lang.NoClassDefFoundError: sun/security/validator/KeyStores

at com.flame.utils.FMSTrustManager$InternalX509TrustManagerImpl.<init>(FMSTrustManager.java:254)

Either rollback the upgrade for Java to a previous working release or add the missing class file as
follows:
Extract KeyStores.class from openjdk 8u212 and import into update 8u222 rt.jar

cd ~/tmp # directory where previous version of sun/security/validator/KeyStores.class was extracted

cp -pv /usr/lib/jvm/java-8-openjdk-amd64/jre/lib/rt.jar \

/usr/lib/jvm/java-8-openjdk-amd64/jre/lib/rt.jar.8u222.backup

jar uf /usr/lib/jvm/java-8-openjdk-amd64/jre/lib/rt.jar \

sun/security/validator/KeyStores.class

6. How many messages can the server handle concurrently?

This is largely dependent on the hardware deployed, the speed of the network and the size of the
messages including any attachments. Suffice it to say that it can handle significant message volumes
per minute.

7. What messaging protocols does the FMS support.

Currently the ebXML Messaging Services Version 3, the AS4 Profile of ebMS 3.0 Version 1.0, the IETF
STD69 Extensible Provisioning Protocol (EPP), and RosettaNet® Implementation Framework Version
2.

8. I've installed the FMS server but I can't start it up and have no idea what is happening!

Locate the log file typically located at /var/log/fms/fms.log or other log files in the same directory
for Linux and unix and and at Programs/FMS/log/serviceinfo.log or other log files in the same
directory for Windows.

Ensure that the certificate keystore has been setup, as per the Section called Importing Public Keys (Cer-
tificates) into the Server Keystore in Chapter 2 and that syslog is configured before startup as per the
Section called Syslog Configuration in Chapter 3.

9. I've setup the syslog handler but I don't see anything in the log file!

Ensure that syslog itself is configured correctly, refer to the Section called Syslog Configuration in Chapter
3

79

Appendix G. Frequently Asked Questions

10. I've started up the FMS server and see that /var/log/fms/fms-stderr.log contains the following
error.

[INFO] is an unknown syslog facility. Defaulting to [USER].

Ensure that the syslog configuration matches the log4j.appender.Syslog.Facility configuration
in file log4j.properties. Refer to the Section called Syslog Configuration in Chapter 3 for further de-
tails.

11. I've started up the FMS server and see that /var/log/fms/fms-stderr.log contains the following
error.

log4j:WARN No appenders could be found for logger (com.flame)

log4j:WARN Please initialize the log4j system properly

Ensure that the log4j.properties configuration is installed in the same directory as the fms.jar file.
Refer to the Section called FMS Logging Configuration in Chapter 3 for further details.

12. I can't make a connection to the remote server! Help!

I get FMS ERROR: Connection interface failed to bind to address when starting FMS.

Make sure the remote server host can be pinged first, if so, then attempt to telnet or openssl to that
server on the port specified. If the telnet or openssl session succeeds then it should work, if not then
ensure that a firewall is not blocking the port and that the server is indeed listening by checking the
logs for any errors. Verify SSL Certificates have been set up correctly.

telnet remote.server.com 443

openssl s_client -connect remote.server.com:443

13. I receive a cipher suite error in the logs or on FMC when trying to connect to the FMS server.

SSLHandshakeException occurred while negotiating a connection: no cipher suites in common.

Ensure that the java java.security file entry for jdk.tls.disabledAlgorithms on both the local and
remote sides do not include the required protocol. For FMC revisions prior to 5.4.2 build 7 the required
transport protocol is TLSv1.

Ensure that the FMS server private certificate for the relevant listener is valid and has not expired.

14. I receive the following error in the FMS logs when trying to connect to the server using the fmsconf
utility.

SSLHandshakeException occurred while negotiating a connection: Client requested protocol TLSv1.2
is not enabled or supported in server context.

SSL Handshake Exception occurred while listening from ’localhost/127.0.0.1’. SSL_VERSION =
’TLSv1.3’, SSL_NEED_CLIENT_AUTH = ’false’ : Error is ’The client supported protocol
versions [TLSv1.2, TLSv1.1, TLSv1] are not accepted by server preferences [TLS13]’.

Ensure that the FMS server configuration listener property SSL_VERSION is set to include TLSv1.2.
Also ensure that the default java.security file does not have TLSv1.2 disabled. Note that this property
can be set up to TLSv1.3 if supported by the java runtime.

15. I receive the following error when trying to connect to the FMS server using the fmsconf utility.

SSL routines:ssl3_read_bytes:sslv3 alert handshake failure:s3_pkt.c:1487:SSL alert
number 40

Ensure that the FMS server private certificate used by the Administration listener is valid and has not
expired.

16. I receive the following error when trying to connect to the FMS server using the fmsconf utility.

ssl handshake failure

This indicates that the server has client authentication set to true for the Administration interface and
therefore requires the necessary certificates on the fmsconf side. For details on key and certificate gen-
eration invoke fmsconf as follows

fmsconf -H

17. I receive the following error when using the fmsconf __FMS_Admin_ListCerts command as follows

80

Appendix G. Frequently Asked Questions

fmsconf -x ’__FMS_Admin_ListCerts certs JKS’

OK

ERROR

An error occurred while reading the keystore: Keystore was tampered with, or password was incorrect

The __FMS_Admin_ListCerts requires a password field to read the contents the certificate store as
follows
fmsconf -x ’__FMS_Admin_ListCerts certs JKS password’

The keystore name (just the file name excluding the directory), type and password must be the same as
specified for the keystore in the FMS ConnectionConfiguration.xml file. Eg.
<cc:keystoreRef cc:ID="default">

<cc:name>certs</cc:name>

<cc:type>JKS</cc:type>

<cc:pass>password</cc:pass>

</cc:keystoreRef>

18. I have SSL problems connecting to a remote server using the fmsclient.as4.jar and would like to see
more detail in the logs

Invoke the client as follows to provide low level debugging information.
java -Djavax.net.debug=ssl:handshake:verbose \

-Dcom.sun.xml.wss.impl.MessageConstants.debug="true" -jar fmsclient.as4.jar

19. I can't make a connection to a remote FMS server! Help!

Has the remote FMS server started up correctly. Look carefully at the logs of the remote FMS server for
any ERROR notifications and address these first.

If the local FMS reports an IOException while writing error followed by an Unrecognized SSL
message then it is likely that the local FMS server is attempting to send an encrypted message to a
remote server that is not expecting an encrypted message.

20. I get the following message in my server log when initiating a request or executing a synchronous
trigger.

[Fatal Error] :1:1: Content is not allowed in prolog.

What is in all likelihood happening is that the the content being handed to the server is not valid XML.

21. I get the following message in my log when attempting to send to a remote destination using HTTPS.

PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException:
unable to find valid certification path to requested target

Ensure that the associated root certificate is up to date in the Java cacerts kesytore and confirm that the
certificate being used validates against it's root certificate path, and that the root certificate exists and
has not expired or been revoked.

The remote server SSL certificate can also be validated as follows using the openssl utility
openssl s_client -connect remote.as4.server.com:443 -showcerts

or if testing with a new root certificate

openssl s_client -CAfile /path/to/RootCA.pem -connect remote.as4.server.com:443 -showcerts

or as follows using the FMS light client
java -Djavax.net.debug=ssl:handshake:verbose .. fmsclient.as4.jar ...

which may provide the following detail

%% Invalidated: [Session-1, TLS_RSA_WITH_AES_256_CBC_SHA256]

main, SEND TLSv1.2 ALERT: fatal, description = certificate_unknown

main, WRITE: TLSv1.2 Alert, length = 2

main, called closeSocket()

main, handling exception: javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: \

PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target

81

Appendix G. Frequently Asked Questions

main, called close()

main, called closeInternal(true)

2019-06-17 15:57:06,006 SEVERE com.sun.xml.internal.messaging.saaj.client.p2p.HttpSOAPConnection post() \

- SAAJ0009: Message send failed

2019-06-17 15:57:06,007 SEVERE com.flame.client.as4.api.Client transmit() - PKIX path building failed: \

sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path \

to requested target

22. I get a message send fail in my log when attempting to send to a remote destination using HTTPS.
2019-08-01 21:40:05,122 SEVERE com.sun.xml.internal.messaging.saaj.client.p2p.HttpSOAPConnection post() \

- SAAJ0009: Message send failed

2019-08-01 21:40:05,123 SEVERE com.flame.client.as4.api.Client transmit() - Received fatal alert: handshake_failure

This error occurs when the remote endpoint is not available or not in a state where it can not accept a
secure connection.

23.

I get the one of following messages in my server log when attempting to listen from a remote destina-
tion.

SSL Handshake Exception occurred while listening from
’remote_host/remote_host_address’ : Received fatal alert: certificate_unknown SSL
Handshake Exception occurred while listening from ’remote.host’ : null cert chain.

Ensure that the SSL client certificate chain is in the server truststore and that the certificate validates
against it's root certificate path in the server truststore. The certificate chain is presented to the remote
client from the server and the client can only respond with the appropriate certificate if the certificate
authority is correctly presented to it. The null cert chain error will occur when the listener property
SSL_NEED_CLIENT_AUTH is set to true for the server listener interface on which an incoming connection
occurs.

The certificate_unknown error can also occur if the keystore contains two private keys with one of
the private keys having expired.

TLSv1 requires a certificate in its keystore that was signed directly or indirectly by any of the signers
mentioned in the SSL CertificateRequest handshake message.

For TLSv1.1 or later if a certificate_authorities list is empty then the client MAY send any cer-
tificate of the appropriate ClientCertificateType, unless there is some external arrangement to the
contrary.

Also see the paragraph under certificate_authorities at
https://tools.ietf.org/html/rfc4346#section-7.4.4.

24.

I get the following error in my server log when attempting to start the server when I have two or more
private keys in the keystore.

Failed to load FMS KeyManager. Could not recover key with password "keypassword":
Cannot recover key

Ensure that all private keys share the same password.

25. I can't start the server because the java command cannot be found!

Ensure Java is installed and setup correctly. Open a console and type java -version it should return
version 1.8.0 or higher.

26. I'm getting validation errors on the RosettaNet DTD headers (Preamble, Delivery, and Service), but my
XML looks perfectly valid, whats wrong?!

The DTD validation of RosettaNet headers is very strict. To force validation to relax disable it by set-
ting the configuration option ROSETTANET_HEADER_VALIDATION to false. This configuration option is
located in the section Package Configuration in the ConnectionConfiguration.xml file.

27. I receive namespace errors on the RosettaNet DTD headers (Preamble, Delivery, and Service), but my
XML looks perfectly valid, whats wrong?!

The DTD namespace implementation is probematic and should be disabled, by setting the configu-
ration option ROSETTANET_HEADER_NAMESPACE_AWARE to false it will be disabled, this configuration
option is located in the section Package Configuration in the ConnectionConfiguration.xml file.

82

Appendix G. Frequently Asked Questions

28. I get a "com.flame.client.as4.api.Client transmit SEVERE: For input string:" error when specifying an
IPv6 address for the host argument.

Ensure that the IPv6 address is encapsulated within square brackets as follows
-h https://[fe80:8::106a:9125:18a9:9f64%en0]:6443/as4s

29. I get a "java.net.BindException?: Cannot assign requested address exception"

If you get an exception like this, then, switch to IPv4 by assigning an IPv4 address in the configuration
file. This is quite likely due to trying to use IPv6 in Linux but Sun's JDK (pre version 6) has a bug.

30. I get a SecurityException: cannot verify signature block file META-INF/BCKEY exception
on the server.

This exception generally occurs when verifying the signature of a signed jar. Try restarting the server
to reload the library jar files.

31.

I get a java.security.NoSuchProviderException: JCE cannot authenticate the provider BC
error log entry.

This exception generally occurs when verifying the signature of a signed jar. Try restarting the server
to reload the library jar files.

32. I get an UnrecoverableKeyException when starting the server yet the alias and the password are
correct.

Ensure that the password is not shared in that keystore, the SSL Key management requires a master
key for encryption, this master key's password must be unique.

33. I get an exception Key inappropriate for algorithm or Illegal key size or default
parameters. What causes it and how do I fix it?

This means that the unrestricted Java policy files have not been installed. Refer to the Section called
Encryption in Chapter 3

34. Various default passwords are used in generating keys and keystores. Do I need to stick to these?

It is highly recommended that no default passwords are used. Remember to first change the configura-
tion files before invoking the key generation utility and the server.

35. I have a problem importing certificates supplied in pkcs7 format into our java key store (JKS).

It seems that to import it using the Java keytool you need to use the exact alias as supplied in the
pkcs7 format but which is unfortunately not visible when viewing the certificate.

Use the following process to import it.

Convert supplied pkcs7 certificate to an x509 certificate
openssl pkcs7 -print_certs -in pkcs7certs.txt -out x509cert.cer

Import supplied converted x509 certificate
keytool -import -trustcacerts -keystore certs -storepass changeit -file x509cert.cer -alias remotepartneralias

Client and FMC

1. I receive a ’Response: No appropriate protocol (protocol is disabled or cipher suites are inappropriate).
Server might require mutual SSL authentication’ message when trying to connect to and FMS server
from FMC.

Ensure that the client side java java.security file entry for jdk.tls.disabledAlgorithms does not
include the required protocol. For FMC revisions prior to 5.4.2 build 7 the required transport protocol
is TLSv1.

Ensure that the FMS server private certificate for the relevant listener is valid and has not expired.

2.

83

Appendix G. Frequently Asked Questions

I get the following SAXParseException when trying to send a message.
2019-04-30 13:30:04,637 WARNING com.flame.client.as4.AS4ClientAPI <init>() \

- Preparing message for sending to host https://ebis-int.open-grid-europe.com/ibis/as4/sync

2019-04-30 13:30:04,637 INFO com.flame.client.as4.api.Client createEnvelope() \

- Creating Envelope with messageID ’AS4-16A6E0248DC-D7C8C@undefined’

2019-04-30 13:30:04,669 INFO com.flame.client.as4.api.Client createPayload() \

- Creating Payload for messageID ’AS4-16A6E0248DC-D7C8C@undefined’

[Fatal Error] :1:1: Content is not allowed in prolog.

ERROR: ’Content is not allowed in prolog.’

2019-04-30 13:30:04,675 SEVERE com.flame.client.as4.api.Client transmit() \

- org.xml.sax.SAXParseException; lineNumber: 1; columnNumber: 1; Content is not allowed in prolog.

Ensure that all arguments are correctly set when invoking the AS4 light client. Eg. ensure that argu-
ments such as ’-ag’ are followed by a value which in this case would be the Agreement Reference.

3. When trying to send a message with the client process I get an unknown connection issue message.

Try to connect to the remote FMS server using openssl or telnet on port 443. If no log messages
appear at the remote FMS then the remote server is not listening on port 443. Ensure that no other
process such as a web server is listening on port 443 on the remote server. Also ensure that the user
starting up FMS has permissions to bind to port 443.

4. I can't start the client because the Java command cannot be found!

Ensure Java is installed and setup correctly. Open a console and type java -version it should return
version 1.8.0 or higher.

AS4 Client

1.

When trying to send a message with the client process I get the following response

PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find
valid certification path to requested target

The client has received an SSL certificate chain that it does not recognise. This implies that the certificate
validation path does not exist in the default cacerts java keystore. If the certificate exists in the client
keystore then try re-sending with the ’-st’ command line switch set to the client keystore.

2. When trying to send a message with the client process I get the following response
com.sun.xml.internal.messaging.saaj.client.p2p.HttpSOAPConnection post

SEVERE: SAAJ0009: Message send failed

SOAP Error: : com.sun.xml.internal.messaging.saaj.SOAPExceptionImpl: Message send failed:

sun.security.validator.ValidatorException: PKIX path building failed:

sun.security.provider.certpath.SunCertPathBuilderException: \

unable to find valid certification path to requested target:

Export the server certificate and install it on the client. See the Section called Keystore Configuration in
Chapter 2 for further details on this.

3.

How do I define the security context file as required by the as4 client?

The client security context as set using the '-sc security.xml' com-
mand line option determines the signing and encryption security of any
sent messages. Full details on the syntax and settings are available at
http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/XWS-
SecurityIntro4.html

4.

I get the following error in my client log when attempting to send to a remote destination.

com.flame.client.as4.api.Client transmit - SEVERE: Received fatal alert:
bad_certificate or com.flame.client.as4.AS4ClientAPI <init> - INFO: ClientException
- Received fatal alert: bad_certificate.

84

Appendix G. Frequently Asked Questions

Ensure that the SSL client certificate chain has been provided and installed in the server truststore
and that the certificate validates against it's root certificate (if a CA signed cert) path in the server
truststore. The certificate chain is presented to the remote client from the server and the client can only
respond with the appropriate certificate if the certificate authority (CA) is correctly presented to it. The
bad_certificate error will occur when the client continues a connection to a remote server without
presenting it's certificate but when client authentication is required.

85

Appendix H. Version History

This section details the differences between the various versions of FMS.

FMS Version History

• Version: 5.4.3 Release 3

1. fmsconf - updated to use python3. This can be overriden by setting environment variable PYTHON
to the required version before invoking fmsconf.

Version: 5.4.3 Release 2

1. Server - removed install requirement for ’PostgreSQL’.

2. Server - removed ’fmsas4lc’ from the server installation. It can be installed as part of the client distri-
bution.

3.

Server 5.4.3 - default keystore type is now ’PKCS12’. This means that all keytool examples in this
document require ’-storetype PKCS12’ instead of ’-storetype JKS’ and changing ’-keypass fmsrns’
which must either be removed or made the same as ’-storepass changeit’.

Version: 5.4.3 Release 1 pre-release

1. Server - Improved warning log message for ’Referenced partner not found’.

2. Server - Migrate from log4j to log4j2.

3. Server Partner Configuration ConnectionConfiguration.partnerIdentifier.organisation -
added optional organisation element.

4. Server Partner Configuration ConnectionConfiguration.partnerIdentifier.address - added
optional address element.

5. Server Partner Configuration ConnectionConfiguration.partnerIdentifier.phone - added op-
tional phone element.

6. Server Partner Configuration ConnectionConfiguration.partnerIdentifier.email - added op-
tional email element.

7. Server Partner Configuration ConnectionConfiguration.partnerIdentifier.email - added op-
tional email element.

8. FMC - Bug fixes and improved certificate export functionality for both DER and PEM formats.

Version: 5.4.2 Release 9

1. Server - removed install requirement for ’PostgreSQL’.

2. Server - removed ’fmsas4lc’ from the server installation. It can be installed as part of the client distri-
bution.

Version: 5.4.2 Release 8

1. 5.4.2-8 p-mode search caching fix (unreproducible).

2. documentation - general editorial updates,

3. FMC - soften TLS protocol - default to TLSv1.2.

Version: 5.4.2 Release 7

1.

FMC - add html directory to doc and include support jars including webservices-rt to the man-
agement console build distributions.

2. FMC - general improvements including keystore management.

3. documentation - general editorial updates including reference to new directory structures,

Version: 5.4.2 Release 6

1.

Server - improved logging.

86

Appendix H. Version History

2.

fmsconf - TLS_ARG now defaults to an empty string.

3.

Server - fixed insert into request query syntax error. This occured in previous versions if the
interfaceConfig.databaseConfig.enabled property is set to true resulting in failed inbound
message processing.

4.

Server - corrected audit log tables /home/fms/schema/postgresq/databaseAudit.sql to match
latest database schema.

5.

Server - updated comments in /home/fms/schema/postgresq/databaseCreation.sql.

6.

Server - updated comments in /home/fms/schema/postgresq/databaseConfig.sql.

7.

Server - updated comments in /home/fms/schema/postgresq/fms.sql.

8.

Console - improved error response messages.

9.

Server - implemented listening on all IP address when the configuration
interfaceConfig.listener.Properties.HOST property is set to ’*’.

10.

Server - Configurable ConnectionConfiguration.partnerIdentifier.mailBox implemented as
described in the Section called Partner Identifier Configuration in Chapter 3.

Used for alternate messsage delivered directory based on the partnerIdentifier definition in the
server configuration.

11. Server - Configurable ConnectionConfiguration.interfaceConfig.deliveredContentDir with
similar functionality as the ConnectionConfiguration.partnerIdentifier.mailBox configura-
tion setting.

Used for alternate messsage delivered directory based on the interfaceConfig definition in the
server configuration.

12.

Server - Support for TLSv1.3 ConnectionConfiguration.interfaceConfig.listener.Properties.ENABLED_SSL_PROTOCOLS
if supported by the java runtime.

13. FMC Management Console - support for exporting certificates in PEM and DER (binary) format.

14. FMC Management Console - improved display of certificate details.

Version: 5.4.2 Release 5

1. Server - added command line option ’-D53’ to revert to the FMS version 5.3 deliveredContentDir
format as follows
fms_installation_dir/<cc:deliveredContentDir>/toPartner.URLtoPath()/conversationID/messageID

instead of the FMS version 5.4 deliveredContentDir format as follows
fms_installation_dir/<cc:deliveredContentDir>/fromPartner.URLtoPath()/toPartner.URLtoPath()/messageID

Version: 5.4.2 Release 4

1. Server - fix missing sun/security/validator/KeyStores.class message on FMS server startup
after upgrading Java® 8 release 212 or earlier to a later version. This resulting in FMS server not
starting up.

Also see 5 for details on circumventing this problem with previous versions of the FMS server.

2. Server - fix incorrect log message Unable to load interface ’HTTP - AS4’:
NullPointerException while reading FMS Licence. This was caused by incorrect or
unresolvable listener HOST property in the Administration interfaceConfig section.

87

Appendix H. Version History

3. Server - Various logging improvements - display stack trace only when FMS LOGGING_LEVEL is
set to TRACE as set in the server main.conf settings.

Version: 5.4.2 Release 3

1. Server - Include fmsas4lc in the debian and ubuntu distribution.

2. Server - New log message ’Using default p-mode’ in debug log level, if no p-mode match was
found and DEFAULT_PMODE is set in the package configuration properties.

3. Server - Change log level from debug to info for ’Setting session pmode’ log message

4. Server - Fixed configuration schema path. No longer needs to be terminated with a path separator.

Version: 5.4.2 Release 2

1. Server - Fixed metadata.fmd <fmd:Location> from relative to absolute path. Was broken in 5.4.2
Release 1.

2. Server - Fixed configuration delivered-content path. Was broken in 5.4.2 Release 1.

3. Server - enhanced file move capabilities both within and across file systems including versioning
(backups) for duplicates.

4. Server - all logging messages for received messages saved now show normalised and absolute path.

5. Server - fixed an issue where a SOAP fault indicating an internal server error was returned with an
HTTP 500 error on receiving an empty payload. This caused the following error in the server logs

com.sun.xml.messaging.saaj.SOAPExceptionImpl: java.lang.NegativeArraySizeException

and SEVERE com.sun.xml.messaging.saaj.soap.AttachmentPartImpl getRawContentBytes()
- SAAJ0577: Exception while trying to get the Raw content for this attachment sent
to stderr.

6. Console - provided management console support for local PKCS12 keystores.

7. server - fixed support for PKCS12 keystores.

8. server - renamed fmsdaemon.deb to fmsdaemon to avoid confusion with debian and ubuntu install
packages.

9. server - removed inadvertent log message displaying certificate alias names introduced in version
5.4.2 release 1.

10. server - database table for storing any payload URL associated with a message implemented.

11. server - database table for storing partner_agreements associated with a message implemented.

12. server - updated bouncy castle libraries.

13. server - fixed permission changes on directory /home/fms during installation.

14. server - fixed unnecessary call to savelog in server startup.

15. server - fixed ConversionPattern for dest3 in log4j.profile.as4.

16. server - clear previous session logging details such as ID, FROM and TO.

17. fmsconf - __FMS_Admin_DeleteCert command extended with optional result argument.

18. fmsconf - __FMS_Admin_GetCert command extended to return the full certificate detail if the op-
tional full argument is provided.

Version: 5.4.2 Release 1

1. Server - Optional partner mailBox (inbox/outbox) for local/remote partners
or the other way around for inbound/outbound messages implemented in
schema/FMS/ConnectionConfiguration-1_0.xsd. Used for alternate delivered directory based on
partnerIdentifier.

2. Server - added command line option ’-w’ to not write a new configuration in case of updates.

3. Server - Message payloads are now correctly moved from temp to destination across file systems.

4. client - New ’-z’ command line option for compressing payloads. If included on the command line
then payloads will be compressed overriding the p-mode setting.

5. client - The "mimeType" (non compressed payloads), "schema" and "characterset" properties
may now be set in the pmode businessInfo.PayloadProfile.mimeType,
businessInfo.PayloadProfile.schemaFile and/or the
businessInfo.PayloadProfile.CharacterSet settings where these will be used

88

Appendix H. Version History

if not included in the properties passed in the ’-a’ command line argument. The appropriate
businessInfo.PayloadProfile will be matched on the "content-id" property that SHOULD be
included in any properties passed in the ’-a’ command line argument. Eg. the following illustrates
a typical pmode businessInfo.PayloadProfile configuration

<pmode:PayloadProfile>

<pmode:ContentID>sbdh-order</pmode:ContentID>

<pmode:mimeType>application/xml</pmode:mimeType>

<pmode:schemaFile>testSbdh.xsd</pmode:schemaFile>

<pmode:CharacterSet>utf-8</pmode:CharacterSet>

<pmode:maxSize>0</pmode:maxSize>

<pmode:usage>expected</pmode:usage>

</pmode:PayloadProfile>

6. Server - table insert SQL statements now include the attributes being inserted. This to permit table
attribute extension without affecting internal code.

7. Server - ConnectionConfiguration.partnerIdentifier.errorEndpointURL endpoint is now
supported as follows

This endpoint indicates the address to which to send ebMS errors generated on the receiving
MSH that receives a message that caused an error. This is typically the endpoint address of
the MSH sending the message that caused an error on the receiving side. It will only be used
if the asResponse is set to true and if the FMS connection interface database is configured.
If ConnectionConfiguration.partnerIdentifier.errorEndpointURL is not set the
P-Mode.errorHandling.receiverErrorsTo setting will be used. This element was ignored prior
to FMS version 5.4.2.

8. Server - P-Mode Error handling endpoints are now supported as follows

a. P-Mode.errorHandling.asResponse

This boolean parameter indicates whether (if true) errors generated from receiving a message
in error are sent over the back-channel of the underlying protocol associated with the message
in error, or as a callback message in the case that the FMS connection interface is configured
with a database connection. All error signals will be sent back on the backchannel if no database
connection is configured. SOAP Faults are always sent back to the remote partner on the back
channel. This element was ignored prior to FMS 5.4.2.

b. P-Mode.errorHandling.receiverErrorsTo

This endpoint indicates the address to which to send ebMS errors generated by the MSH that
receives a message in error. This is typically the endpoint address of the MSH sending the mes-
sage that caused an error. It will only be used if asResponse is set to true and if the FMS
connection interface database is configured. This endpoint is overriden by the optional con-
nection configuration partnerId errorEndpointURL if configured. This element was ignored
prior to FMS version 5.4.2.

9. Server - Receipt acknowledgement triggers have been extended with the following available argu-
ments

a. SERVICE.

b. ACTION.

c. SENDER_IDENTIFIER.

d. SENDER_ROLE.

e. RECIPIENT_IDENTIFIER.

f. RECIPIENT_ROLE.

g. SUBMITTED.

h. CONVERSATION_ID.

i. PATH.

10. Server - Improved message file saving permitting across filesystem saving of payloads, receipts and
other signals between MESSAGE_TMP_DIR and delivered-content directories.

89

Appendix H. Version History

11. Server - interfaceConfig.deliveredContent directory structure changed from

../delivered-content/initiatingParty/message-id

to

../delivered-content/initiatingParty/respondingParty/message-id

where the partner strings have any preceding URI elements removed to ensure a consistent directory
structure. Eg.

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultFrom

is transformed to just

defaultFrom

12. Server - connection configuration deliveredContent directory support for absolute paths for both
*nix and Windows operating systems.

13. Server - Use the responding (local) partner keystore for determining the private decryption key. This
permits the use of multiple private keys each associated with a separate initiating (remote) partner.

14. Server - Use the initiating (remote) partner keystore for determining the key to sign a receipt signal
response for a received user message. This permits the use of multiple private keys where remote
partners can then be issued with separate public keys as associated with their respective keystores.
Note that keystores can be shared across partners permitting a single keystore with a single pri-
vate/public key across any number of remote and local partners.

15. Server - The listener.aliasRef.alias value is now used to determine the SSL private key alias in
the associated listener keystore if set. If not set (empty) then the SSL private key will default to the
first private key located in the keystore.

16. Server - Listener activation now picks up the correct interface properties from the server configura-
tion including the following.

a. <prop:entry prop:key="SSL_PROVIDER">SunJSSE</prop:entry>.

b. <prop:entry prop:key="SSL_NEED_CLIENT_AUTH">true</prop:entry>.

c. <prop:entry prop:key="SSL_VERSION">TLSv1</prop:entry>.

17. Server - Listening sockets are now closed down when shutting the server down and when closing
and reloading interfaces from the management console.

18. Server - Logging now includes the thread id.

19. Server - Inbound messages using security setting keyReferenceType="IssuerSerialNumber" com-
parison on certificate issuer improved and is now based on RFC 3280 compliant comparison.

20. Client - improved usage message for the ’-h’ host command line option when using a TCP IPv6
address.

21. Server - A Receipt for a user message that could not be signed due to the private certificate alias being
incorrectly configured on the server and as associated with the remote (previously local) partner
configuration resulted in an EBMS:0102 error returned to the initiating party. The server now logs the
error and responds with a SOAP fault indicating a server side problem to the client.

22. FMC - improved support for TCP IPv6 addresses when connecting to a server.

23. fmsconf - general improvements and no longer requires certificates if the server admin listener
SSL_NEED_CLIENT_AUTH property is set to false.

24. Server - Implement multiple private certificates for signing outbound messages by locating the pri-
vate signing certificate using the initiating (remote) partner aliasRef alias in the initiating partner
keystore for signing receipts.

If the certificate alias could not be located in the initiating partner keystore search the responding
(local) partner keystore using the responding partner aliasRef alias.

Previously only the responding partner keystore was searched permitting only a single private sign-
ing certificate for outbound receipts.

25. Server - Use the responding (local) partner keystore for locating the private certificate for decrypt-
ing inbound messages and not the listener keystore. If not located then try the listener keystore as
previously done.

90

Appendix H. Version History

26. Server - Verify signature for inbound user message by searching the responding (local) partner key-
store for a match. If not found search the listener keystore. If not found fail.

27. Server - Improved default configuration and p-mode creation on startup. Now based on default
properties

28. Windows install - include send.bat and sample XML payload

29. Server - Fixed receiving message with unknown encryption key and unknown partner results NPE.

30. Server - Fixed error if pmode:queueMessages is missing from the configuration.

31. Server - Logging for Linux changed as follows

a. /var/log/fms/debug.log renamed to /var/log/fms/fms.log. General FMS server logs. Con-
figured in /etc/fms/log4j.properties.as4.

b. /var/log/fms/out.log renamed to /var/log/fms/fms-stdout.log. Configured in
/etc/fms/fmsdaemon (ubuntu, debian) or /etc/fms/fms.conf (RedHat, CentOS).

c. /var/log/fms/err.log renamed to /var/log/fms/fms-webservices.log. Detailed
webservices soap and security logs. Configured as java.util.logging.FileHandler in
/etc/fms/logging.properties

d. /var/log/fms/err.log renamed to /var/log/fms/fms-stderr.log. General
webservices soap and security logs. Configured in /etc/fms/logging.properties
(java.util.logging.ConsoleHandler aka stderr) and /etc/fms/fmsdaemon (ubuntu,
debian) or /etc/fms/fms.conf (RedHat, CentOS).

e. /var/log/fms/error.log. Removed from log4j.properties.as4. Can be re-configured as
dest3 in /etc/fms/log4j.properties.as4

32. Server logging configurations for Linux are now as follows

a. /etc/fms/log4j.properties.as4. FMS Server general logging configuration.

b. /etc/fms/logging.properties. FMS Server Webservices logging configuration.

33. FMC Logging

a. /etc/fms/log4j.properties.mc. FMC logging configuration (goes to stdout).

34. FMC - Fixed error not displaying cc:interfaceConfig. Due to invalid setting for
cc:interfaceConfig.Optimisations.retryFrequency = 300000

35. Fixed java.lang.ClassCastException: com.sun.xml.messaging.saaj.soap.impl.SOAPTextImpl
cannot be cast to javax.xml.soap.SOAPElement due to tabs or spaces in security encryption
<xenc:CipherReference...> element of an encrypted incoming user message.

Version: 5.4.1 Release 3

1. client - improved logging

2. client - move atTime to before preparing message to be sent

3. client - optional ’-messageFile soapFile.out’ command line option to save outbound soap en-
velopes

4. client - fmsclient.as4.jar ’-d’ command line switch sets ’ALL’ for logging.properties but no
longer ’OFF’ if not set. This so logging can be configured in logging.properties using ’java
-Djava.util.logging.config.file=/home/fms/trigger/logging.properties’.

5. server - messages are now saved with thread_id in the case of no DB connections as follows as per
directory setting in main.conf

<entry key="HTTP_REQUEST_STORAGE_DIRECTORY">/home/fms/http_requests/ </entry>
OUTGOING-01112017-074737.582-13_sig.dat

INCOMING-01112017-074737.253-13_um.dat

where ’-13_’ indicates the thread id. This to ensure uniqueness in filenames

6. server - fixed FMS_ARGS in /etc/fms/fms.conf

91

Appendix H. Version History

7. client - the following attachment partproperties set on the ’-a’ command line option are removed
from the part properties for compressed payloads.

a. partProperties.remove("mimetype");

b. partProperties.remove("description");

This as the following duplicate properties are added when the payload is compressed

MimeType, Description, CompressionType

resulting in duplicate part properties.

8. server - Default properties updated to use latest signing and encryption algorithms.

9. server - Default configuration generation updated to use default properties.

10. server - Improved logging

Version: 5.4.1 Release 2

1. client - atTime ’-at msecs’ now works when timeouts are not set.

2. server - improve debug logging, and throw certificate error reason to be used in response if certificate
validation failed due to a problem with the root certificate.

3. server - remove call to undocumented jdk.nashorn.internal.ir.debug.ObjectSizeCalculator as that
causes errors (com.flame.shared.exceptions.PackingException: Unhandled exception Exception:
Internal Server Error) with later versions of java (1.8.0_131...)

Version: 5.4.1 Release 1

1. client - new ’-batch batchArgs.txt’ command line option

The new optional command line option ’-batch file’ permits multiple messages to multiple loca-
tions during a single session. Each line contains separate client arguments for separate messages.

Invoke fmsclient.as4.jar as follows when using the new ’-batch’ command line option
java -jar fmsclient.as4.jar -batch batchArgs.txt -k ./fmstestcerts -ksp changeit -d

where batchArgs.txt contain lines with fmsclient.as4.jar arguments for each separate message.
Lines starting with a ’#’ character are ignored.

2. Improved logging - includes detail when compressing and securing messages.

Version: 5.4.0 Release 4

1. server - further improvements to large payload (up to 1.8GB) handling. Includes updates to
webservices-rt including saaj-impl-1.3.28, mimepull to 1.9.1 and org.jvnet.staxex to 1.7.8

2. server and client - removed NLs surrounding <wsse:Security> ... </wsse:Security> tags - this in an
attempt improve .NET interoperability.

3. server and client - HTTP_BAD_REQUEST (400) Responses eg. SOAP faults no longer blocked.

4. client - Improved truststore private key retrieval logging

Version: 5.4.0 Release 3

1. server - further improvements to large payload (up to 1.8GB) handling. Includes updates to
webservices-rt including saaj-impl-1.3.28, mimepull to 1.9.1 and org.jvnet.staxex to 1.7.8

2. Also includes changes to removing NLs from encryption CipherValue element. SignatureValue still
contains NLs.

3. Externalised setting of -Dsaaj.mime.optimization=true -Dsaaj.use.mimepull=true
-Dsaaj.lazy.mime.optimization=true. These java args must now be set on FMS startup

Version: 5.4.0 Release 2

1. server - large payload (up to 1.8GB) handling. Includes updates to webservices-rt including saaj-
impl-1.3.28, mimepull to 1.9.1 and org.jvnet.staxex to 1.7.8

2. server - ubuntu and debian package fixes and improvements.

3. server - logging improvements.

Version: 5.4.0 Release 1

92

Appendix H. Version History

1. server - xmlsec 2.0.7 based webservices server

2. server - optimisation if certificate matches entry in keystore

3. server - fixed problem with saving inbound binary compressed attachments

4. server - fixed activation problem with java-1.8 on some VMs

Version 5.3.4 Release 2

1. client - Certificate chain validation for validating incoming signing certs implemented.

2. client - Support for separation of ssl trust store (default java cacerts) from key store by default.

New optional ’-st sslTruststore’ and ’-stsp sslTruststorePass’ command line options to
set the ssl truststore to an alternate truststore. Set ’-st’ to the same as the keystore location for pre
5.3.4-2 behavior.

3. client - Command line option ’-u’ now works as expected. Ie. SSL support is not loaded if set.

4. client - Certificate chain validation for validating incoming ssl certs implemented.

5. client - Return code 3 in case of SSL certificate error.

6. client - Implemented ’-noSystemExit’ command line option. If set then program return status will
be sent to stdout instead of the invoking shell.

7. client - Copyright notice now goes to stderr.

Version 5.3.4 Release1

1. client - Dynamic p-mode support for setting initiating and responding partner p-mode settings. In-
cludes setting partner.party@type and partner.role on the command line.

2. client - New command line args include -toType, -toRole, -fromType, -fromRole.

Use these command line options when any of ’-from’ or ’-to’ do not match what is in the p-mode.
Used to override p-mode settings particularly when dynamic p-modes are required without having
to create new p-mode files.

Version 5.3.3 Release 17

1. client - migrate to java 1.8.

2. client - further encryption support for gcm encryption algorithms.

3. client - support for EncryptedKey.EncryptionMethod.DigestMethod

4. client - support for key encryption method "http://www.w3.org/2009/xmlenc11#rsa-oaep"

5. client - fixed part properties usage example by escaping the first colon.

6. client - improved error trapping on non-existing attachments.

7. client - added stack trace on null pointer exceptions (return code 6).

Version 5.3.3 Release 16

1. client - fixed spec in URL instantiation. Was set to path instead of the full spec as returned by
url.getFile()

2. client - no need to override URLConnection() if connectTimeout and responseTimeout is not set.

3. client - allow pmode:party/@pmode:type and pmode:party/@type. Fixed regression
pmode:party/@type since 5.3.3-13

4. client - allow pmode:service/@pmode:type and pmode:service/@type. Fixed regression
pmode:service/@type since 5.3.3-13

5. client - implemented underlying encryption support for gcm algorithms. Only available with java 1.8.

6. client - improved logging.

Version 5.3.3 Release 15

1. client - log for message transmit time (based on com.flame.client.as4 logger) when ’-d’ command
line option is used.

2. client - set return code to TIMEOUT (4) on read or connect timeout.

3. client - set return code to CONNECTION_EXCEPTION (2) on failing to establish a connection.

Version 5.3.3 Release 14

93

Appendix H. Version History

1. client - Improved error message when failing to connect to remote host. Eg. ’network unavailable’

2. client - New command line options

-at <Send Time> - Send message at current time + time in milliseconds or at specified future date
in format yyyy-MM-dd’T’HH:mm:ss.SSS eg. 2100-01-01T00:00:00:000

-t <Timeout> - Connection timeout in milliseconds. Defaults to 30000.

-T <Timeout> - Response timeout in milliseconds. Defaults to 30000.

Set both -t and -T to 0 to disable timeouts.

Version 5.3.3 Release 13

1. client - New command line option ’-X’ for dumping security providers.

2. client - Unused command line option ’-pr’ removed.

3. client - Command line option ’-r refToMessageId’ now also works for user messages.

4. client - New repeatable command line option ’-mp’ for setting MessageProperties.

5. client - messageID ’-m messageID’ now functions as expected.

6. client - Use of p-mode.id and agreementref now optional if not defined in the p-mode.

7. client - Only default pmode:party/@type to "string" if party is not a URI - also see RFC 2396

Version 5.3.3 Release 12

1. client - Improvements to SSL context handling.

2. client - Internal improvements and bug fixes.

Version 5.3.3 Release 11

1. client - Added 400 response code as SOAPFault (even though it's against SOAP 1.2 over HTTP) - also
see https://java.net/jira/browse/SAAJ-74 and https://issues.jboss.org/browse/WFLY-3966

2. client - Strip path from attached payload files as appears in Content-Disposition

3. client - Internal improvements and bug fixes.

Version 5.3.3 Release 10

1. client - fixed bug saving payload attachments

Version 5.3.3 Release 9

1. client - remove schema from part properties.

Version 5.3.3 Release 8

1. client - bug fix for ’-service’ and ’-serviceType’ command line options when sending messages
with attached payloads

Version 5.3.3 Release 6 and 7

1. client - debug flag now sets security config dumpMessage=’true’ for inbound messages.

2. client - attachment filename can now be either a filename or external payload pointed to by a url
which will be retrieved

3. client - remove filename,content-id,mimetype,description and encoding from part properties

4. client - do not gzip payload if the payload is already compressed as per gzip sig bytes ID1 and
ID2 from RFC 1952. Requires <pmode:useCompression>true</pmode:useCompression> in the p-
mode.

Version 5.3.3 Release 4 and 5

1. client - Internal improvements including bug fixes for partner type.

Version 5.3.3 Release 3

1. client - Internal improvements and bug fixes.

Version 5.3.3 Release 2

1. client - Do not with an empty messageID

Version 5.3.3 Release 1

1. client - First release of fmsclient.as4.jar based on sas4client.jar

94

Appendix H. Version History

Version: 5.3.2 Release 19

1. server - dynamic partner support - create initiating partner from the ’from’ party field in message if
it does not exist. Note no @type as yet.

2. server - fixed NRR receipts not being signed for incoming signed messages from unknown remote
partners

3. server - fix retrieving private key for the local partner - was set to attempting to obtain private key
using the remote partner alias.

4. server - fixed debug message output

5. server - Certificate chain validation for validating incoming SSL certificates implemented. Requires
root CA certificate either in the truststore or in cacerts.

6. FIXES for CA certs

Version: 5.3.2 Release 18

1. fmsconf - updated usage

2. server - improved checking on service, action, agreementref and mpc if these are empty strings

3. server - Dynamic p-modes. Set p-mode to packagerConfig.Properties.DEFAULT_PMODE if no p-
mode match. If no DEFAULT_PMODE property match then no match.

4. server - improved logging

5. server - now validates sign certificates against issuer CA as well.

Version: 5.3.2 Release 17

1. Server - webservice-rt.jar

a. Support for Java® 8.

b. Support for AES_GCM_BLOCK_ENCRYPTION_128,
AES_GCM_BLOCK_ENCRYPTION_192, AES_GCM_BLOCK_ENCRYPTION_256 with Java®
8.

c. Improved logging.

d. Attachment "Content-Transfer-Encoding" changed from base64 to binary.

2. Server - RESPONSE_SENT trigger improvements. This trigger fires after writing final response for
incoming user message. It may be used for implementing twoWay MEPs.

3. Server - improved logging for cert handling - now shows keystore used.

4. Server - partner identification now done prior to the security processing. This requires that
<eb:Messaging> -> <eb:UserMessage> -> <eb:PartyInfo> not be encrypted as per 5.1.6 of the AS4
Profile and as recommended in 7.4 of the core spec.

5. Server - Locate the private decryption and signature verification key in the local partner keystore
if not found in the connection keystore. The connection private key is used for SSL so the private
decryption and signature verification key can now be separate.

6. Server - Return EBMS:0303 on failure to un-compress a compressed incoming attachment.

7. Server - mark message as failed in case of internal Exception (Session.run())

8. Server - improved logging (include class and method name in TRACE mode)

9. Server - improved checking for non-existant messageID

10. Server - SignatureKeyCallback.AliasPrivKeyCertRequest - improved logging and set keystore re-
ferred to by initiatingParty (was respondingParty) as required when separating keystores based on
partners.

11. Server - Trigger position RESPONSE_SENT include path

12. Server - if a test message with service set to ’http://.../service’ and action set
to’http://.../test’ then process complete message and now also creates a receipt if specified in
the p-mode, but do not writePayload. e-SENS requirement

13. Server - throw packingException on missing MimeType PayloadInfo PartProperty - Compressed
payload requirement from section 3.1 of the AS4-Profile.

95

Appendix H. Version History

14. Server - metadata.fmd support for PartInfo/PartProperties/Property/@name="CharacterSet".
Added MimeCharacterSet to schema/FMS/FMSMetadataDocument-1_0.xsd - not written to meta-
data.fmd as yet

15. Server - throw PackingException with ValueNotRecognized (EBMS:0001) on invalid character set
(eb:PartInfo/eb:PartProperties/eb:Property/@name="CharacterSet") for a compressed xml
SWA payload. Also see Section 3.1 of the AS4 Profile.

16. Server - Admin protocal command for __FMS_Admin_ReloadLicence. Also reloads connections.

17. Server - Fixed logging and management console viewing and updating of license details

18. Schema - FMSMetadataDocument-1_0.xsd support for the following Eg. metatdata.fmd may now
include
<fmd:MessagePayloads>

<fmd:Payload>

<fmd:MimeContentID>xmlpayload@minder</fmd:MimeContentID>

<fmd:MimeContentType>application/xml</fmd:MimeContentType>

<fmd:MimeCharacterSet>utf-16</fmd:MimeCharacterSet> <!-- optional -->

<fmd:Location>/home/fms/delivered-content/flame-c2/703131/6622e78c@mindertestbed.org/attachment-0</fmd:Location>

</fmd:Payload>

19. Schema - FMSMetadataDocument-1_0.xsd support for the following

a. metadata.fmd support for eb:CollaborationInfo/eb:AgreementRef Eg. metatdata.fmd may now
include

<fmd:AgreementRef>test-agreement</fmd:AgreementRef>

b. metadata.fmd support for
eb:MessageInfo/eb:Timestamp
Eg. metadata.fmd now includes

<fmd:Timestamp>2016-02-12T12:30:22.552Z</fmd:MessageID>

20. fmsconf implemented.

Version: 5.3.2 Release 16

1. Server - Close SSL socket bugfix for 5.3.2-14 and 5.3.2-15

2. Fixed non-blocking server mode as reported for 5.3.2-15 (hanging sockets) - 5.3.2-16

Version: 5.3.2 Release 15

1. Server - Fixed NPE bugfix for 5.3.2-14 on returning a response when attempting to fire
RESPONSE_SENT trigger. Occurs when pulling from non-existing MPC or pushing to an
non-existing p-mode.

Version: 5.3.2 Release 14

1. message.message_type - OTHER=7 for soap faults

2. Server - much improved log messages - TRACE will generate huge logs including stack traces on
error conditions, DEBUG is useful for debugging and recommended in a running test environment
and INFO appropriate for a long running production server.

3. Server - SSL protocol property
<prop:entry prop:key="ENABLED_SSL_PROTOCOLS">TLSv1.2</prop:entry>

4. Server - improved socket connection threading and handling - new LISTENER_COUNT property with
default set to 5 plus the value of LISTENER_COUNT. Used for number of listeners.

<prop:entry prop:key="LISTENER_COUNT">5</prop:entry>

5. Server delivery directory and file handling improvements

User Messages
fms_installation_dir/<cc:deliveredContentDir>/toPartner.URLtoPath()/conversationID/messageID/fromPartner.URLtoPath()-action.[xml|soap]

96

Appendix H. Version History

Meta file delivery to
fms_installation_dir/<cc:deliveredContentDir>/toPartner.URLtoPath()/conversationID/messageID/metadata.fmd

Receipts
fms_installation_dir/<cc:deliveredContentDir>/fromPartner.URLtoPath()/message_id/receipt.soap

Meta file delivery to
fms_installation_dir/<cc:deliveredContentDir>/fromPartner.URLtoPath()/message_id/metadata.fmd

6. Server message storage directory improvements (used if no db)

user messages to fms_installation_dir/HTTP_REQUEST_STORAGE_DIRECTORY/[INCOMING|OUTGOING]-
mmddyyyy-hhmmss.SSS_um.dat (no mime messages so no attachments) signal messages to
fms_installation_dir/HTTP_REQUEST_STORAGE_DIRECTORY/[INCOMING|OUTGOING]-
mmddyyyy-hhmmss.SSS_sig.dat

7. Server interfaceConfig acls implemented for AS4 listeners.

8. Server RECEIVE trigger argument 10 now contains PATH indicating full path name of delivered mes-
sages and metadata.

Requires change to ConnectionConfiguration.xml triggers as follows

Change
<tg:Trigger>

<tg:identifier>ReceiveMessage</tg:identifier>

<tg:enabled>true</tg:enabled>

<tg:type>SynchronousExecutable</tg:type>

<tg:location>RECEIVE</tg:location>

<tg:instruction>./trigger/Receive.sh %1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s</tg:instruction>

<tg:providedArguments>action</tg:providedArguments>

<tg:providedArguments>conversationID</tg:providedArguments>

<tg:providedArguments>event</tg:providedArguments>

<tg:providedArguments>messageID</tg:providedArguments>

<tg:providedArguments>MPC</tg:providedArguments>

<tg:providedArguments>processingMode</tg:providedArguments>

<tg:providedArguments>recipientIdentifier</tg:providedArguments>

<tg:providedArguments>senderIdentifier</tg:providedArguments>

<tg:providedArguments>service</tg:providedArguments>

<tg:executionType>External</tg:executionType>

</tg:Trigger>

to
<tg:Trigger>

<tg:identifier>ReceiveMessage</tg:identifier>

<tg:enabled>true</tg:enabled>

<tg:type>SynchronousExecutable</tg:type>

<tg:location>RECEIVE</tg:location>

<tg:instruction>./trigger/Receive.sh %1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s %10$s</tg:instruction>

<tg:providedArguments>action</tg:providedArguments>

<tg:providedArguments>conversationID</tg:providedArguments>

<tg:providedArguments>event</tg:providedArguments>

<tg:providedArguments>messageID</tg:providedArguments>

<tg:providedArguments>MPC</tg:providedArguments>

<tg:providedArguments>processingMode</tg:providedArguments>

<tg:providedArguments>recipientIdentifier</tg:providedArguments>

<tg:providedArguments>senderIdentifier</tg:providedArguments>

<tg:providedArguments>service</tg:providedArguments>

<tg:providedArguments>path</tg:providedArguments>

<tg:executionType>External</tg:executionType>

</tg:Trigger>

9. Server returns HTTP CODE 400 regression fixed - this bug crept in with the -14 build updates. May
cause the pulling partner to drop the associated EBMS response message

97

Appendix H. Version History

eg. EBMS:0006:EmptyMessagePartitionChannel.

10. Server now returns 200.

Version: 5.3.2 Release 13

1. server - provide support for absolute URIs as per RFC 2616
(http://tools.ietf.org/html/rfc2616#section-9.5)

2. server - improved usage message

3. rpm package - include Envelope directory

Version: 5.3.2 Release 12

1. server and as4 client - Java® 7 compatibility, tweak on socket close

2. server - Java® 1.6.0_31 problem with attachments - Changed saaj.lazy.contentlength from true to false

Version: 5.3.2 Release 11

1. Server - messageid suffix configured as $host gives wrong host - fixed

2. Server - Locate the private decryption and signature verification key in the local partner keystore if
not found in the connection keystore.

3. SSL key customisation - ConnectionConfiguration.xml

Change
<cc:listener cc:packagerConfigID="AS4-PackageManager">

<cc:name>AS4</cc:name>

<cc:className>com.flame.connection.impl.ebXML.AS4.RemoteIn</cc:className>

<cc:aliasRef cc:keystoreID="default">

<cc:alias>fmsrns</cc:alias>

<cc:password>fmsrns</cc:password>

</cc:aliasRef>

to
<cc:listener cc:packagerConfigID="AS4-PackageManager">

<cc:name>AS4</cc:name>

<cc:className>com.flame.connection.impl.ebXML.AS4.RemoteIn</cc:className>

<cc:aliasRef cc:keystoreID="flamessl">

<cc:alias>flamessl</cc:alias>

<cc:password>fmsrns</cc:password>

</cc:aliasRef>

and add the following
<cc:keystoreRef cc:ID="flamessl">

<cc:name>ssl_certs</cc:name>

<cc:type>JKS</cc:type>

<cc:pass>changeit</cc:pass>

</cc:keystoreRef>

4. Server - Implement signing messages and NRR (non repudiation receipts) with separate signing cert
instead of the partner SSL cert

Gen the new private key into a separate keystore as follows - required to avoid
java.security.InvalidKeyException: Not an RSA key: DSA when do the default keytool -genkey ???
keytool -genkeypair -keyalg RSA -sigalg MD5withRSA -alias flamesign -keypass fmsrns \

-keystore sign_certs -storepass changeit -keysize 2048 -storetype JKS

Then set the partner and keystore as follows
<cc:partnerIdentifier cc:value="flame" cc:type="string">

<cc:endpointURL>https://localhost:6444/AS4</cc:endpointURL>

<cc:partnerType>LOCAL_PARTNER</cc:partnerType>

<cc:username>flame</cc:username>

<cc:password>flame</cc:password>

<cc:aliasRef cc:keystoreID="flamesign">

<cc:alias>flamesign</cc:alias>

<cc:password>fmsrns</cc:password>

98

Appendix H. Version History

</cc:aliasRef>

<cc:keystoreRef cc:ID="flamesign">

<cc:name>sign_certs</cc:name>

<cc:type>JKS</cc:type>

<cc:pass>changeit</cc:pass>

</cc:keystoreRef>

5. Server and client swa 11 encryption compliant transform fix (metro webservices jars), and
wsse:mustUndertand = "true" instead of "1"

6. Server - the messageid suffix not included for errors - fixed 5.3.2-11

7. Client - Softened up service and action - can now be set via the command line

8. Client - fix schema option for attachments, set via the ’-a schema:location;...’ command line
option per attachment

9. Client - ’-suffix’ command line option to set the messageid suffix

10. Client - new exception that can be used for invalid arguments

11. Client - Allow escape characters to escape required characters such as ’:’ in the ’-a’ attachment key
value pairs

Version: 5.3.2 Release 9

1. Server - NPE on storing invalid messagees

2. Update FMS server p-mode search algorithm

i. Using the optional @pmode attribute in the agreementref - if set but does not match return
EBMS:0010

ii. combination of to/from/service/action - if to/from/service/action are set but no match goto
next step

iii. combination of to/from/agreementref - if to/from/agreementref set but no match goto next
step

iv. Just agreementref - if agreementref set but no match then return EBMS:0010.

v. combination of from/MPC for pulls - if from/MPC set but no match then return EBMS:0010.
and finally

vi. just MPC for pulls

3. New configuration properties
<prop:entry \

prop:key="EBXML_SOAP_EXTENSION_NS">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/</prop:entry>

<prop:entry \

prop:key="DEFAULT_INITIATOR_ROLE">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator</prop:entry>

<prop:entry \

prop:key="DEFAULT_RESPONDER_ROLE">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder</prop:entry>

<prop:entry \

prop:key="DEFAULT_SERVICE">http://docs.oasis-open.org/ebxml-msg/as4/200902/service</prop:entry>

<prop:entry \

prop:key="DEFAULT_ACTION">http://docs.oasis-open.org/ebxml-msg/as4/200902/action</prop:entry>

<prop:entry \

prop:key="ONEWAY_MEP">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay</prop:entry>

<prop:entry \

prop:key="TWOWAY_MEP">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay</prop:entry>

<prop:entry \

prop:key="PUSH_MEP">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/push</prop:entry>

<prop:entry \

prop:key="PULL_MEP">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pull</prop:entry>

<prop:entry \

prop:key="PUSH_PUSH_MEP">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pushAndPush</prop:entry>

<prop:entry \

prop:key="PUSH_PULL_MEP">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pushAndPull</prop:entry>

<prop:entry \

prop:key="PULL_PUSH_MEP">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pullAndPush</prop:entry>

<prop:entry \

prop:key="SYNC_MEP">http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/sync</prop:entry>

99

Appendix H. Version History

Version: 5.3.2 Release 9

1. Client - create attachment directory if it does not exist. Was broken for default case.

2.

Client - fixed ignoring of suffix - caused light client to be non RFC 2822 compliant for MessageId

3.

Client - attachment part properties are not included in PartInfo from the p-mode or from the ’-a’
command line option - done

4. Client - Allow pmode:ID to be set to an empty string eg. <pmode:ProcessingMode
pmode:ID="" xmlns:tg="http://fms.flame.business/FMS/schema/Trigger"
xmlns:pmode="http://fms.flame.business/FMS/schema/ProcessingMode"> if empty do not
include @pmode in CollaborationInfo.AgreementRef

Version: 5.3.2 Release 7

1. Server - table message add column event - provides missing event from old configuration table

2. Server -table dispatch add column retry_threshold - provides missing retry_threshold from old con-
figuration table

3. Server -table dispatch add column retry_interval - provides missing retry_interval from old configu-
ration table

4. Server -index dispatch_attempt_dispatch_id_idx - missing index - used for
DatabaseHandler.isMessageRetriable

5. Server Configuration - Security Encryption Certificate - make it minOccurs="0" - done 5.3.2-6

6. Server - add event to message table (was originally in configuration which now no longer exists). -
done 5.3.2-6

7. Server - remove journal trace logs - done

8. Server - customise the prefix/suffix for messageid - done

9. server - toRole incorrect - set to fromRole - fixed problem xpath on the as4client

10. Server - SID, FROM and TO log4j settings are not reset on new connections made to the server - these
must be cleared. - fixed 5.3.2-7

11.

Server - MessageId for empty MPC messages are wrong - contain the to party instead of the from
party. Also if the party is a url then characters to the right of the @ do not conform to RFC 2822 - need
to only get the last bit or use host - fixed 5.3.2-7

12. Server - Receipt message ids have $to instead of $from - fixed

Version: 4.3.0 Release 1

1. Server - Added message direction to PullMessagesForMPC query to prevent incorrect messages be-
ing sent to pull requester (Incorrect private key for message error)

2. Server - All interfaces now have access to all p-modes.

3. Server - Log error when service is not found.

4. Server - Removed configuration limit on listeners.

5. Server - Fixed bug during dispatch update when transaction is locked.

6. Server - Fixed configuration refresh not refreshing listener configuration.

7. Server - Fixed endpoint/MPC in partner identifier references.

8. Server - Fixed incorrect connection path being printed on bind.

9. Server - Fixed message transaction locking.

10. Server - Fixed null P-Mode message referring to old interface association.

11. Server - Fixed possible null pointer when no packagers exist.

12. Server - Fixed server classpath after BC library update.

100

Appendix H. Version History

13. Server - Fixed synchronous reliable messaging with and without receipts.

14. Server - Implemented auto pull features in processing modes.

15. Server - Implemented service and action property searching for Rosettanet.

16. Server - Implemented service mapping location using service identifier rather than associated service
mapping

17. Server - First write messages to temp directory before moving to delivered-content directory.

18. Server - Fixed potential for duplicated http response send.

19. Server - Adjusted service names to UBL and PIDX.

20. Console - Added FMC drag and drop transfer handlers.

21. Console - Confirm whether the administrator wants to refresh the connections on save.

22. Console - Added splashscreen to jar load.

23. Console - Improved administrator connection error message.

24. Console - Fixed handling of modified nodes on exit.

25. Console - Moved location of the help dialog to be on the left if there is no space on the right.

26. Console - Set modality type for the wizard dialog.

27. Console - Paste now appends Copy Of in front of pasted node.

28. Console - Adjusted paste to insert nodes at an index.

29. Console - Adjusted properties so it uses old properties when resaving.

30. Console - Implement shortcuts for management console

31. Console - Adjusted transport and payload security levels to be MIME and SOAP security levels
respectively.

32. Console - Adjusted wizard to run without a connection to a server.

33. Console - Fixed P-Mode duplication copy-of-copy-of issue.

34. Console - Fixed clone bugs.

35. Console - Fixed cloning of P-Mode conversationID.

36. Console - Fixed help file referencing.

37. Console - Fixed tree not modifying the correct nodes.

38. Console - Fixed null variables causing XML parse failure when saving.

39. Console - Fixed null pointer for null outgoing connection.

40. Console - Fixed partnerIdentifier modification causing null pointer when handler node is not se-
lected.

41. Console - Fixed template re-assignment issue when going back to beginning without changing tem-
plate types.

42. Console - Fixed unmodified tree method, forward scan on handler node first, then backward to root.

43. Console - Implemented undo editor, resets all edits with each new panel that is opened.

44. Console - Implemented administrator MOTD command.

45. Console - Implemented Tree Drag and Drop.

46. Console - Implemented multiple administrator connections.

47. Console - Implemented report graphs (Messages/Minute over Time, Messages/Minute meter,
Message Times, Message Composition)

48. Console - Implemented report message search queries.

49. Console - Implemented empty file handlers for easy access (cached).

50. Console - Implemented imports of configurations to an administration connection.

51. Console - Implemented reports node for message queries with menu accessors.

52. Console - Implemented unified wizard dialog.

53. Console - Moved Quit from File menu and About from Help menu for Mac OS X

101

Appendix H. Version History

54. Console - Moved content identifier in PayloadProfile to below schema selection.

Version: 4.2.7 Release 1

1. System - Upgraded compiler to Java 1.6

2. Server - Implement extended protocol for the administration connection to the server. This to enable
multiple concurrent connections from the FMC to FMS servers.

3. Server - Removed all connection restrictions. Licensing restrictions are implemented at the partner
level.

4. Console - Deprecated Configuration Editor and replaced it with FMC.

5. Console - Implemented authentication for the administration connection.

• Version: 4.2.6 Release 18

1. Server - Implemented FMSMetadataDocument to be deposited in the delivered content directory.

2. Server - Added application client correlation code for correlation of sequenceID and sequenceNum
from client properties.

3. Server - Implemented WS-ReliableMessaging

4. Server - Implemented configurable Trigger system which can invoke a system executable or log a
custom message when trigger location is encountered.

5. Server - Implemented custom HTTP compression as well as client compression for slower connec-
tions.

6. Server - ebXML - Implemented UsernameToken authentication.

7. Server - Implemented database pooling and queuing system.

8. Server - Implemented system network optimisations and prioritizing of TCP/IP packets.

9. Server - Adapted protocolListener to allow handles with sub handles in the format
https://host:port/handle/subhandle

10. Server - Added log message to log time/size/bandwidth after upload/download.

11. Server - Adjusted storage of messages to indicate the direction (Incoming or Outgoing).

12. Server - Added thread names for logging purposes.

13. Configuration - Fixed memory leaks after opening popup panels.

14. Configuration - Tightened up GUI controls and consistancy.

15. Configuration - Added configurable tooltips with HTML ToolTip viewer to FMC.

16. Many other bug fixes and enchancements.

• Version: 4.1.3 Release: 1

1. Server - Implemented Processing Modes (P-Mode).

• Version: 4.1.2 Release: 10

1. Server - Include message content in SOAP Body and implement namespace separation for WSS en-
cryption and signatures.

2. Server - Library update to fix external namespace bug in SOAP Envelope when marshalling complex
XML objects.

• Version: 4.1.2 Release: 9

1. Server - Adjusted Database connection handling to abort connection instantiation if database con-
nection fails unless in INIT mode so as to generate the connection specific settings.

2. Server - Adjusted destinationAddress usage.

3. Server - Updated transmission message for pull requests.

4. Server - Added MPC attribute value to UserMessage.

102

Appendix H. Version History

5. Server - Adjusted exception handling for unknown MPC

6. Server - Allowed all interfaces to be instantiated during INIT mode to allow for non enabled connec-
tion specific configuration entries to be populated during first init to prevent confusion during initial
configuration.

7. Server - Rethrow SQL exception during connection should failure occur for underlying layer to han-
dle.

8. Server - ebXML Package Manager - Adjusted so that a client specified CPA in a Test environment
will not be cached.

9. Server - ebXML Package Manager - Removed Production environment check when checking for
Override Client CPA.

10. Server - ebXML Package Manager - Adjusted CPA TTL to be in seconds instead of milliseconds.

11. Server - ebXML Package Manager - Removed Production environment check when checking for
Override Client CPA.

12. Server - ebXML Package Manager - Added null checks when recipient is unknown but error message
must be generated.

13. Client - Implemented new exit status code handling.

14. Client - Added -q for a single messageID query instead of using -Q for testing multiple messageIDs
from the messageID temp store file.

15. Client - Added EMPTY_MESSAGE_PARTITION_CHANNEL exit code for PullRequest errors.

16. Client - Removed RosettaNet specific PIP references.

17. Configuration - Adjusted alignment of buttons in button panel, adjusted alignment of administration
menu bar, added administration version to menu About.

18. Configuration - Changed CPA config Override Client CPA in Production to Override Client
CPA, removed defunct CPA registry URL field.

19. Configuration - Set usage to only display Production and Test, admin connections are fixed as Usage:
Admin.

20. Configuration - Adjusted admin console colours for better readability, recalled last viewed configu-
ration on reload.

21. Administration - Added server log level notification on new admin connection to adjust gui controls.

22. Administration - Fixed menu options availability when disconnected.

• Version: 4.1.2 Release: 4

1. Server - Added readMimeMultiPart from ebMS connections to PackageManager, unsynchronized
some methods to prevent deadlock.

2. Server - Added better logging for pullrequests.

3. Server - Adjusted readHTTPBoundary finishing check to only check if the line ends with boundary
+ "--" rather than more explicit equals.

• Version: 4.1.2 Release: 3

1. All - Implemented Pull Requests.

2. Server - Added findPartnerIdentifierByEndpoint method for use with PullRequests.

3. Client - Fixed required argument checking arrays.

• Version: 4.1.2 Release: 2

1. Server - Adjusted ebXML.RemoteOut to use custom Socket instead of HttpsURLConnection due to
synchronous transmission problems.

2. Server - Shifted message construction around, took Receipt, Error and PullRequest construction
out of createV3Envelope and placed construction code into createV3Receipt, createV3Error and cre-
ateV3PullRequest respectively, renamed createV3Envelope to createV3Request.

103

Appendix H. Version History

3. All - Added PartnerType enum for PartnerIdentifiers one of {LOCAL_PARTNER,
REMOTE_PARTNER, PULL_PARTNER}.

• Version: 4.1.1 Release: 3

1. All - Renamed Packing to Package and PIP to Schema.

2. All - Renamed PipMapping and PIPEntry to SchemaMapping and SchemaEntry.

3. Administration - Added expiry date to Licence check.

4. Server - Rebuilt with new Metro Webservices libraries.

• Version: 4.1.1 Release: 1

1. Configuration - Centered Connection Config arrow between buttons, Added delayed draw of water-
mark when resizing or moving to prevent 100% CPU usage due to downscaling of watermark image
during continuous resize.

2. Server - Implemented chained EntityResolver as well as deeper search mechanisms for the location
of XML Schemas.

104

Appendix I. Glossary

• CPA

Defined as a Collaboration Protocol Agreement and derived from a CPP. It is an agreement between busi-
ness partners which defines the way partners interact in performing a chosen set of business collabora-
tions. It is defined in XML. Further details available at http://www.oasis-open.org/committees/ebxml-
cppa/documents/ebcpp-2.0.pdf

• CPP

The Collaboration Protocol Profile (CPP) defines the message exchange capabilities of a
business partner and the business collaborations that it supports. Further details available at
http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf

• CP

Conformance Profile - the gateway profile that lists the features expected of a MSH acting as an e-Business
gateway to backend systems.

• DUNS

Data Universal Numbering System (DUNS) is a system developed and regulated by Dun & Bradstreet
which assigns a unique numeric identifier to a single business entity. Further details available at
http://www.dnb.com

• FMS

Flame Message Server.

• MEP

Message Exchange Pattern (MEP) is defined as a message sequence that follows a defined message ex-
change pattern required by a communications protocol. There are two major message exchange patterns
being one-way and two-way. MEPs are manifested in the P-Mode.

• MPC

A Message Partition Channel (MPC) is a flow of messages from a set of sending MSHs to a set of receiving
MSHs. An MSH may have an associated priority determined by agreement between business partners.

• MSH

Message Service Handler (MSH) provides the interface and services required for encapsulating messages
in in an electronic envelope and securely forwarding the envelope to a remote destination possibly via an
MSH chain. FMS is an instance of an MSH.

• MOM

Message Oriented Middleware (MOM) is a client/server infrastructure that enables the interoperability,
portability, and flexibility of an application by allowing the application to be distributed over multiple
heterogeneous platforms (Wikipedia).FMS falls in this class of software.

• Package Manager

A mechanism used to encapsulate messages according to the various requirements of a published messag-
ing specification, such as ebXML or RosettaNet. Implemented as a Java class file stored in a Jar archive.

• P-Mode

An MSH operates either for sending or receiving messages with knowledge of some contextual informa-
tion that controls the way messages are processed. This contextual information that governs the processing
of a particular message is called Processing Mode (P-Mode). Because different messages may be subject to
different types of processing, an MSH generally supports several P-Modes. The set of all P-Modes that are
supported by an MSH during operation, is called the P-Mode operation set of the MSH.

The association of a P-Mode with a message may be based on various criteria, usually dependent on
header data (e.g. Service/Action, Conversation ID, or other message properties). Which security and/or
which reliability protocol and parameters, as well as which MEP is being used when sending a message,
is determined by the P-Mode associated with this message.

• Partner Identifier

A unique identifier associated with a Business Partner.

• Reliable Messaging

105

Appendix I. Glossary

(a) WS-Reliability 1.1 and (b) WS-ReliableMessaging. (a) has been an OASIS standard for several years, has
been tested and implemented by communities of users, notably in Asia. (b) is a more recent standard, still
awaiting for WS-I interoperability guidance, but enjoying a broad support among US-based companies.
This fulfills the Quality of Service requirements for a message.

• SOAP

SOAP (from wikipedia) is a protocol for exchanging XML based messages over computer networks, nor-
mally using HTTP/HTTPS. SOAP forms the foundation layer of the web services protocol stack providing
a basic messaging framework upon which abstract layers can be built.

• WSS1.0/1.1

Web Services Security Encryption/decryption of any SOAP message content and generation/verification
of any digital signatures forms part of this specification.

106

Appendix J. Bibliography

• AS4-profile-v1.0.pdf http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-
profile/v1.0/os/AS4-profile-v1.0-os.html

OASIS AS4 Profile of ebMS 3.0 Version 1.0 Committee Specification 03 dated 30 April 2012.

• ebCPP-2_0.pdf

OASIS ebXML Collaboration Protocol Profile and Agreement Technical Committee

• ebms_core-3.0-spec.pdf http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-
spec.html

OASIS ebXML Messaging Services Version 3.0: Part 1, Core Features, 1 October 2007.

• rosettanet.org

RosettaNet Implementation Framework: Core Specification Version: V02.00.01 Revised: 6 March 2002

• wikipedia.org

Definitions of messaging terminology and acronyms.

107

Index

Symbols
1.8.0 release 222

java, 79
443

port, 84
__FMS_Admin_AddCert

fmsconf, 60
__FMS_Admin_CheckLicense

fmsconf, 59
__FMS_Admin_ConnectionStatistics

fmsconf, 60
__FMS_Admin_DeleteCert

fmsconf, 60, 88
__FMS_Admin_GetCert

fmsconf, 60, 88
__FMS_Admin_GetConfiguration

fmsconf, 59
__FMS_Admin_GetServerLogLevel

fmsconf, 60
__FMS_Admin_ListCerts

fmsconf, 60, 81
__FMS_Admin_ReloadConfigurations

fmsconf, 59
__FMS_Admin_ReloadConnections

fmsconf, 59
__FMS_Admin_ReloadLicense

fmsconf, 60
__FMS_Admin_RenameKey

fmsconf, 60
__FMS_Admin_ServerLogLevel

fmsconf, 60
__FMS_Admin_Version

fmsconf, 59

A
ACK

Trigger, 39
action

default, 99
Trigger, 89

Adding
Certificate, 16

address
bind, 84
IPv4, 82
IPv6, 82

adduser.exe
password, 21, 22

admin
user, 21, 62

Administration
FMS, 20
listener, 80

administrator
user.cfg, 62, 66

Agreement
Collaboration

Protocol, 7

Alias
Keystore, 27
Password, 27
SSL

listener, 90
Application

Business, 1
Representation, 1

arguments
AS4 Client, 93
AS4 Light Client, 44, 88, 91, 91, 92, 92, 93, 93, 94, 94,
99, 100
fmsclient.as4.jar, 91
Server, 66, 87, 88

AS4
Client, 1, 42, 79

Return Values, 53
Edition, 1
Profile of ebMS 3.0, vi
protocol, 79

AS4 Client
arguments, 93
certificate validation, 93
FAQ, 84
keystore, 93
noSystemExit, 93
PKIX path, 81, 84
security context, 42, 84
ssl, 93
SSL certificate path, 81, 84
truststore, 93

AS4 Light Client
arguments, 44, 88, 91, 91, 92, 92, 93, 93, 94, 94, 99, 100
Example, 43
p-mode, 44, 46
sc.xml, 48
security context, 48

asResponse
errorHandling, 89

authentication
SSL, 80

B
BACKUP_DIR

updateCert.sh, 63
bad_certificate

Client, 84
base64

certificate, 60
bind

address, 84
BouncyCastle

Server, 88
Business

Application, 1

108

C
CA

Certificate, 15
CentOS

Linux, 5
RPM, 6

certificate
base64, 60
CA, 15
console, 87
Encrypt, 15
export, 87
fmsconf, 80
Generation

keytool, 15
pkcs7, 83
Requirements, 6
rollover, 63
Security, 8, 15
Self Signed, 15
Server, 63
Sign, 15
SSL, 8, 15, 52
update, 63

schedule, 65
updateCert.sh, 60, 63
x509, 83

Certificate Issuer Comparison
RFC3280, 90

certificate validation
AS4 Client, 93

certs
keystore, 12

characterset
payload, 88

Cipher
SSLHandshakeException, 80
suites, 80

ciphers
permitted, 79
TLS, 79

Client
AS4, 1, 42, 79
bad_certificate, 84
ebXML, 51

RosettaNet, 51
FAQ, 83
fmsas4lc

wrapper, 59, 88
IPv6, 82, 90
RosettaNet, 51
Usage, 51

Collaboration
Protocol

Agreement, 7
Profile, 7

Collaboration Protocol Agreement, 105
Collaboration Protocol Profile, 105
compression

payload, 88
Configuration

ConnectionConfiguration.xml, 20
Database, 17, 17, 18
ebXML, 34

Encryption, 33
EPP, 35
FMS, 7, 20
linux, 7
Log4j, 39, 40
main, 66
parse, 79
RosettaNet, 33
Server, 20
System, 21

Conformance Profile, 105
connect

fmsconf, 80
connection

SSL, 82
TLS, 82
unknown, 84

ConnectionConfiguration
deliveredContentDir, 87, 87, 89
FMS, 25
interfaceConfig, 23
keystore, 15, 27
Package

Manager, 33
PartnerIdentifier, 78
ROSETTANET_HEADER_NAMESPACE_AWARE,
82
ROSETTANET_HEADER_VALIDATION, 82
Signatures, 33
SSL, 98
trigger, 97

ConnectionConfiguration.xml
Configuration, 20
FMS, 14

CONNECTION_CONFIGURATION_FILE, 24
console

certificate, 87
errors, 87
FMS, 14
management, 8, 20, 21, 86
pkcs12, 88

content
prolog, 81

context
security, 84

Conversation ID
P-Mode, 29

CONVERSATION_ID
Trigger, 89

ConversionPattern
log4j.profile, 88

Country Code
ISO 3166-1, 14

CP, 105
CPA, 28, 105

cache, 6
P-Mode, 29

CPP, 105

109

D
data

encryption, 5
Data Universal Numbering System, 105
Database

Configuration, 17, 17, 18
databaseAudit.sql, 87
databaseConfig.sql, 87
databaseCreation.sql, 87
fms, 17, 18
fms.sql, 87
Installation, 17, 17, 18, 18
JDBC, 6
PostgreSQL, 6, 17, 17, 18
remote, 18
request

insert, 87
schema, 19
Ubuntu, 17
Windows, 18

databaseAudit.sql
database, 87

databaseConfig.sql
database, 87

databaseCreation.sql, 17, 18, 19
database, 87

deb
Server, 6

debian
Distribution, 6
fmsas4lc, 88
fmsdaemon, 88, 91
Installation, 6
Ubuntu, 6

debug
SSL, 81, 81

decryption
key, 90
private

key, 90
private key, 95

default
action, 99
password, 15
role, 99
service, 99

DEFAULT_PMODE
server, 88, 95

deletion
user, 22
user.cfg, 22

delivered-content
deliveredContentDir, 89
directory, 24, 58, 74, 75, 88, 89, 89, 96, 101

deliveredContentDir
ConnectionConfiguration, 87, 87, 89
delivered-content, 89
interfaceConfig, 89
Server, 87

DeliveryHeader
Namespace, 82
Validation, 82

destination, 88
Dictionaries, 21

Digatal
Signatures, 33

Digital Signatures, 7
directory

delivered-content, 24, 58, 74, 75, 88, 89, 89, 96, 101
MESSAGE_TMP_DIR, 24, 89
Windows, 13

disabled
protocol, 83

Distribution
debian, 6
RPM, 6
Windows, 8

dropTables.sql, 17, 18, 19
DUNS, 105

number, 51

E
ebXML

Client, 51
Return Values, 53

Configuration, 34
Errors, 54
Example, 74
Messaging Services, vi
protocol, 79

EDI for Administration
RFC1767, ??

Edition
AS4, 1
Enterprise, 3
Professional, 2
Pull, 1
Push, 1
Starter, 2

ENABLED_SSL_PROTOCOLS
TLSv1.3, 87

Encrypt
Certificate, 15

Encryption, 7
Configuration, 33
data, 5
fmsclient.as4.jar, 79
GCM, 4, 5
key, 5

Endpoint
URL, 28

Enterprise
Edition, 3

environment
fmsconf, 62

EPP, 21
Configuration, 35
Extensible Provisioning Protocol, vi
protocol, 79

error
fatal, 81

errorEndpointURL
Partner, 89

errorHandling
asResponse, 89
receiverErrorsTo, 89

110

errors
console, 87
ebXML, 54
FMS, 56
Processing, 54
Reliability, 56
RosettaNet, 56
Security, 55

Event
P-Mode, 29

Events
P-Mode, 28

Example
AS4 Light Client, 43
ebXML, 74
RosettaNet, 77
Setup, 74

Exception, 52
Exit Codes, 50, 52
export

certificate, 87
Exporting

Certificate, 16
Extensible Provisioning Protocol

EPP, vi

F
FAQ

AS4 Client, 84
Client, 83
Server, 79

fatal
error, 81

file
fms.ini, 14

Firewall, 5, 5
Connectivity, 1

FMC, 22, 86
Installation, 8
Linux, 8, 22
UNIX, 22
Windows, 22

FMS
Administration, 20
Configuration, 7, 20
ConnectionConfiguration, 25
ConnectionConfiguration.xml, 14
Console, 14
Database, 17, 18
Errors, 56
Initialisation, 20
Installation, 6
logs, 79
Service, 14
Specifications, 3
Starter, 2
startup, 79
Utilities, 59

fms.ini
file, 14

fms.lcn
License, 12

fms.sql, 17, 18, 19
database, 87

fmsas4lc
client

wrapper, 59, 88
debian, 88
ubuntu, 88

fmsclient.as4.jar
arguments, 91
encryption, 79
SAXParseException, 83

fmsconf
certificate, 80
connect, 80
environment, 62
handshake, 80
openssl, 62
python, 86
requirements, 60
server

utility, 59
SSL_NEED_CLIENT_AUTH, 90
TLS_ARG, 87
updateCert.sh, 63
Usage, 59
__FMS_Admin_AddCert, 60
__FMS_Admin_CheckLicense, 59
__FMS_Admin_ConnectionStatistics, 60
__FMS_Admin_DeleteCert, 60, 88
__FMS_Admin_GetCert, 60, 88
__FMS_Admin_GetConfiguration, 59
__FMS_Admin_GetServerLogLevel, 60
__FMS_Admin_ListCerts, 60, 81
__FMS_Admin_ReloadConfigurations, 59
__FMS_Admin_ReloadConnections, 59
__FMS_Admin_ReloadLicense, 60
__FMS_Admin_RenameKey, 60
__FMS_Admin_ServerLogLevel, 60
__FMS_Admin_Version, 59

fmsdaemon
debian, 88, 91
ubuntu, 88, 91

FMS_HOME
updateCert.sh, 63

G
GCM

Encryption, 4, 5
Generation

Certificate
keytool, 15

getopt
utility, 60

GLOBAL_USAGE_CODE, 33
Gzip

RFC1952, 94
RFC6713, ??

111

H
handshake

fmsconf, 80
SSL, 81

handshake_failure
SAAJ0009, 82

History
Version, 86

Host
IPv4, 82
IPv6, 82, 90
listener, 87
Property, 87

HTTP, 5
HTTP 500

server, 88
HTTPS, 5
HTTP_REQUEST_STORAGE_DIRECTORY, 24
Hypertext Transfer Protocol

RFC2616, 98

I
ID

Keystore, 27
Identfier

Partner, 26
Value, 27

Identifiers
Partner, 20

Importing
Certificate, 16

init
Server, 7

Initialisation
FMS, 20
Server, 66

insert
SQL, 89

Installation
Database, 17, 17, 18, 18
debian, 6
FMC, 8
FMS, 6
Linux, 6
RPM, 6
Server, 6
Windows, 8

interfaceConfig
ConnectionConfiguration, 23
deliveredContentDir, 89

Interfaces, 20
Internet Message Format

RFC2822, 100, 100
IOException

SSL, 81
IPv4

Address, 82
Host, 82

IPv6
Address, 82
Client, 82, 90
Host, 82, 90

ISO 3166-1
Country Code, 14

IssuerSerialNumber
keyReferenceType, 90

J
java

1.8.0 release 222, 79
keystore, 20
Missing KeyStores.class, 87
policy, 78
security, 62, 79, 80, 83
upgrade, 79
URL, 5

java.security
jdk.tls.disabledAlgorithms, 80, 83

JDBC
Database, 6

jdk.tls.disabledAlgorithms
java.security, 80, 83

JKS
keytool, 15, 16, 62, 86

JRE
URL, 5

K
key

decryption, 90
encryption, 5
private, 90

decryption, 90
Private Key

Public Key, 33
RSA, 13
signing, 90

keypass
keytool, 15, 16, 62, 86

keyReferenceType
IssuerSerialNumber, 90

keystore, 16, 42, 61, 63, 82, 84, 92, 95
Alias, 27
AS4 Client, 93
certs, 12
ConnectionConfiguration, 15, 27
ID, 27
java, 20
private, 90
signing, 90
SSL, 90

KeyStores, 20
keytool

Certificate
Generation, 15

JKS, 15, 16, 62, 86
keypass, 15, 16, 62, 86
PKCS12, 15, 16, 62, 86
storepass, 15, 16, 62, 86
utility, 15, 16, 61, 83, 98

112

L
Licence

Requirements, 6
License

fms.lcn, 12
Linux

CentOS, 5
Configuration, 7
FMC, 8, 22
Installation, 6
PostgreSQL, 17
RedHat, 5, 17
Ubuntu, 5, 17

listener
Administration, 80
HOST, 87
SSL

alias, 90
location

Log4j, 39
log paths

server, 88
Log4j

Configuration, 39, 40
File

Logging, 39
File Logging

Configuration, 68
Format, 68
HTML

Logging, 39
location, 39
logging, 7, 79
rotate, 40
rsyslog, 40
rsyslog.conf, 40
SMTP

Logging, 39
syslog, 40

Configuration, 68
Logging, 39

URL, 40
log4j.profile

ConversionPattern, 88
logging

Log4j, 7, 79
File, 39
HTML, 39
SMTP, 39
Syslog, 39

rsyslog, 40
server, 86

LOGGING_LEVEL
ALL, 24, 69, 96
DEBUG, 24, 69, 96
ERROR, 24, 69
FATAL, 24, 69
INFO, 24, 69, 96
OFF, 24
TRACE, 24, 69, 95, 96
WARN, 24, 69

logs
FMS, 79

M
Mac

OS X, 5

mailBox

Partner, 87, 88

Server, 87, 88

main

configuration, 66

main.conf

server, 20, 23, 87

Management

console, 8, 20, 21, 86

system, 20

Manager

Package, 33

MEP, 105

oneWay, 44, 46, 99

P-Mode, 29

twoWay, 38, 95, 99

message

metadata, 24

volume, 79

Message Exchange Pattern, 105

Message Oriented Middleware, 105

Message Partition Channel, 105

Message Service Handler, 105

MESSAGE_TMP_DIR

directory, 24, 89

Messaging

Reliable, 67

Messaging Services

ebXML, vi

metadata

message, 24

metadata.fmd

METADATA_FILE, 24

METADATA_FILE

metadata.fmd, 24

Microsoft

Windows, 5

MIME Types, 53

mimeType

payload, 88

Missing KeyStores.class

java, 87

Mode

Processing, 7, 28

MOM, 105

MPC, 105

MSH, 105

113

N
NACK

Trigger, 39
Namespace

DeliveryHeader, 82
Preamble, 82
ServiceHeader, 82

non
repudiation, 6

noSystemExit
AS4 Client, 93

Number
DUNS, 51

O
OAGIS

BOD, 71
oneWay

MEP, 44, 46, 99
openssl

fmsconf, 62
server, 80
SSL, 81
s_client, 62
utility, 60, 61, 80, 81, 83, 84

OS X
Mac, 5

P
P-Mode, 7, 20, 28, 105

AS4 Light Client, 44, 46
Conversation ID, 29
CPA, 29
Event, 29

Errors, 32
Identifier, 29
Profile, 30
Protocol, 30
Reliability, 31
Security, 31

Events, 28
Business Information, 28
Error Handling, 28
Protocol, 28
Reliability, 28
Security, 28

General, 29
MEP, 29
Party, 29
Password, 29
Role, 29, 29

Package
Configuration

ebXML, 34
EPP, 35
RosettaNet, 33

Manager
ConnectionConfiguration, 33

Packagers, 21
parse

Configuration, 79
Partner

errorEndpointURL, 89
Identfier, 26
Identifiers, 20
mailBox, 87, 88
Type, 27, 27

Partner Identifier, 105
PartnerIdentifier

ConnectionConfiguration, 78
partner_agreements

table, 88
Party

P-Mode, 29
password

adduser.exe, 21, 22
Alias, 27
default, 15
P-Mode, 29
Private Key, 82
user.cfg, 21, 62

path
PKIX, 53
Trigger, 89

payload
characterset, 88
compression, 88
destination, 88
mimeType, 88
schema, 88
URL, 88

payloads
table, 88

permitted
ciphers, 79

PIDX, 21
Petroleum Industry Data Exchange, 71

PIP
specification, 71

pkcs12
console, 88
keytool, 15, 16, 62, 86
server, 88
truststore, 63, 88

pkcs7
certificate, 83

PKIX
path, 53
SSL, 53, 81

PKIX path
AS4 Client, 81, 84
SAAJ0009, 81

policy
java, 78

port
443, 84
TCP/IP, 5

PostgreSQL
Database, 6, 17, 17, 18
Linux, 17
UNIX, 17
Windows, 18

Preamble
Namespace, 82

114

Validation, 82
private

decryption
key, 90

key, 90
private key

decryption, 95
Password, 82
sign, 95
SSL, 95, 98

Processing
Errors, 54
Mode, 7, 28

Processing Mode, 20, 105
Professional

Edition, 2
Profile

Collaboration
Protocol, 7

prolog
content, 81

Property
HOST, 87
ROSETTANET_HEADER_NAMESPACE_AWARE,
82
SSL_NEED_CLIENT_AUTH, 60, 82, 84, 90
SSL_PROVIDER, 60, 90
SSL_VERSION, 60, 90

protocol
AS4, 79
disabled, 83
ebXML, 79
EPP, 79
RosettaNet, 79
SSLHandshakeException, 80

Pull
Edition, 1

PULL_REQUEST
Trigger, 38

PULL_REQUEST_EXPIRED
Trigger, 38

Push
Edition, 1

python
fmsconf, 86
utility, 60
version, 86

R
Receipt

trigger, 89
ReceiptAcknowledgment, 52
receiverErrorsTo

errorHandling, 89
RECIPIENT_IDENTIFIER

Trigger, 89
RECIPIENT_ROLE

Trigger, 89
RedHat

Linux, 5, 17
RPM, 6, 17
rsyslog, 40

Reliability
Errors, 56

Reliable
Messaging, 67

Reliable Messaging, 105
remote

database, 18
server, 80

request
database

insert, 87
Requirements

Certificate, 6
fmsconf, 60
Licence, 6
System, 5

RESPONSE_SENT
Trigger, 38, 95

restart
Server, 7

Return Values
AS4

Client, 53
ebXML

Client, 53
RosettaNet

Client, 53
RFC

3280, 90
RFC1767

EDI for Administration, ??
RFC1952

Gzip, 94
RFC2396

URI Generic Syntax, 94
RFC2616

Hypertext Transfer Protocol, 98
RFC2822

Internet Message Format, 100, 100
RFC3280

Certificate Issuer Comparison, 90
RFC6713

Gzip, ??
RNIF

RosettaNet, vi
role

default, 99
P-Mode, 29, 29

rollover
certificate, 63

RosettaNet
Client, 51

Return Values, 53
Configuration, 33
ebXML

Client, 51
Envelope, 52
Errors, 56
Example, 77
protocol, 79
RNIF, vi
Validation, 82

ROSETTANET_HEADER_NAMESPACE_AWARE
ConnectionConfiguration, 82

115

Property, 82
ROSETTANET_HEADER_VALIDATION, 82

ConnectionConfiguration, 82
rotate

Log4j, 40
RPM

CentOS, 6
Distribution, 6
Installation, 6
RedHat, 6, 17
Server, 6, 88

RSA
Key, 13

rsyslog
log4j, 40
Logging, 40
RedHat, 40
Ubuntu, 40

rsyslog.conf
log4j, 40

S
SAAJ0009

handshake_failure, 82
PKIX path, 81

SAAJ0577
stderr, 88

SAXParseException
fmsclient.as4.jar, 83

sc.xml
AS4 Light Client, 48

schedule
certificate

update, 65
schema

database, 19
payload, 88
Validation, 79
XML, 71

Security
Certificate, 8, 15

Adding, 16
Exporting, 16
Importing, 16

context, 84
Errors, 55
java, 62, 79, 80, 83
Keystore

Password, 15, 16, 16, 16
security context

AS4 Client, 42, 84
AS4 Light Client, 48

Self Signed
Certificate, 15

SEND
Trigger, 38

SENDER_IDENTIFIER
Trigger, 89

SENDER_ROLE
Trigger, 89

Server
arguments, 66, 87, 88

BouncyCastle, 88
certificate, 63
Configuration, 20
deb, 6
DEFAULT_PMODE, 88, 95
deliveredContentDir, 87
FAQ, 79
fmsconf

utility, 59
HTTP 500, 88
init, 7
initialisation, 66
Installation, 6
log paths, 88
logging, 86
mailBox, 87, 88
main.conf, 20, 23, 87
openssl, 80
pkcs12, 88
remote, 80
restart, 7
RPM, 6, 88
shutdown, 7
soap fault, 88
SSLHandshakeException, 80, 80
start, 79
startup, 7, 88
status, 7
telnet, 80

service
default, 99
FMS, 14
Trigger, 89

Service Oriented Architecture
SOA, vi

ServiceHeader
Namespace, 82
Validation, 82

Services, 21
Setup

Example, 74
shutdown

Server, 7
Sign

Certificate, 15
private key, 95

Signatures
ConnectionConfiguration, 33
Digital, 33

signing
key, 90
keystore, 90

SOA
Service Oriented Architecture, vi

SOAP, 106
soap fault

server, 88
Solaris

Sun, 5
Specification

PIP, 71
Specifications

FMS, 3
SPECIFICATION_JARS, 24

116

SQL
insert, 89

SSL
alias

listener, 90
AS4 Client, 93
authentication, 80
Certificate, 8, 15, 52
connection, 82
ConnectionConfiguration, 98
debug, 81, 81
Handshake, 81
IOException, 81
keystore, 90
openssl, 81
PKIX, 53, 81
private key, 95, 98

SSL certificate path
AS4 Client, 81, 84

SSLHandshakeException
Cipher, 80
Protocol, 80
Server, 80, 80

SSL_NEED_CLIENT_AUTH
fmsconf, 90
Property, 60, 82, 84, 90

SSL_PROVIDER
Property, 60, 90

SSL_VERSION
Property, 60, 90

start
Server, 79

Starter
Edition, 2
FMS, 2

startup
FMS, 79
Server, 7, 88

status
Server, 7

stderr, 50, 52
SAAJ0577, 88

stdout, 50, 52
storepass

keytool, 15, 16, 62, 86
SUBMITTED

Trigger, 89
suites

cipher, 80
Sun

Solaris, 5
synchronous

trigger, 81
syslog

log4j, 40
unknown, 79

System
Configuration, 21
management, 20
Requirements, 5

s_client
openssl, 62

T

table

partner_agreements, 88

payloads, 88

TCP/IP

Port, 5

telnet

server, 80

utility, 84

TLS

ciphers, 79

connection, 82

TLSv1.3

ENABLED_SSL_PROTOCOLS, 87

TLS_ARG

fmsconf, 87

TRACE

LOGGING_LEVEL, 95

Trigger

ACK, 39

ACTION, 89

ConnectionConfiguration, 97

CONVERSATION_ID, 89

NACK, 39

PATH, 89

PULL_REQUEST, 38

PULL_REQUEST_EXPIRED, 38

receipt, 89

RECIPIENT_IDENTIFIER, 89

RECIPIENT_ROLE, 89

RESPONSE_SENT, 38, 95

SEND, 38

SENDER_IDENTIFIER, 89

SENDER_ROLE, 89

SERVICE, 89

SUBMITTED, 89

synchronous, 81

truststore, 16, 42, 60, 60, 60, 61, 63, 82, 84, 92, 95

AS4 Client, 93

pkcs12, 63, 88

TRUSTSTORE_PW

updateCert.sh, 63

TRUSTSTORE_TYPE

updateCert.sh, 63

twoWay

MEP, 38, 95, 99

Type

Partner, 27, 27

117

U
UBL, 21

Universal Business Language, 71
Ubuntu

Database, 17
debian, 6
fmsas4lc, 88
fmsdaemon, 88, 91
Linux, 5, 17
rsyslog, 40

UNIX
FMC, 22
PostgreSQL, 17

unknown
connection, 84
syslog, 79

update
certificate, 63

updateCert.sh
BACKUP_DIR, 63
certificate, 60, 63
fmsconf, 63
FMS_HOME, 63
TRUSTSTORE_PW, 63
TRUSTSTORE_TYPE, 63
wrapper, 60, 63

upgrade
java, 79

URI Generic Syntax
RFC2396, 94

URL
Endpoint, 28
Java, 5
JRE, 5
Log4j, 40
payload, 88

Usage
fmsconf, 59

user
admin, 21, 62
deletion, 22

user.cfg
administrator, 62, 66
deletion, 22
password, 21, 62

Utilities
FMS, 59

utility
getopt, 60
keytool, 15, 16, 61, 83, 98
openssl, 60, 61, 80, 81, 83, 84
python, 60
telnet, 84

V
Validation

DeliveryHeader, 82
Preamble, 82
RosettaNet, 82
schema, 79
ServiceHeader, 82

Value

Identfier, 27
Version

History, 86
python, 86

volume
message, 79

W
Web Services Security, 106
Windows

Database, 18
Directory, 13
Distribution, 8
FMC, 22
Installation, 8
Microsoft, 5
PostgreSQL, 18

wrapper
updateCert.sh, 60, 63

WS-Reliability, 105
WS-Reliablemessaging, 105
WSS, 106

X
x509

certificate, 83
XML

Schema, 71
XML_INDENT_STRING, 24

Notes
1.

2.

3.

4.

5.

6.

7.

8.

9.

118

